У нас вы можете посмотреть бесплатно Introduction to Reinforcement Learning- Bellman Equation (GridWorld: Matlab) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#Bellman #reinforcement #learning #matlab #machinelearning #Gridworld To Support: https://www.paypal.com/paypalme/alshi... we’ll discuss Dynamic Programming and its role in Generalized Policy Iteration, a mutually reliant pair of processes that can self-optimize in order to identify the ideal trajectories within an environment to achieve maximum reward. Dynamic programming (DP) is one of the most central tenets of reinforcement learning. Within the context of Reinforcement Learning, they can be described as a collection of algorithms that can be used to compute optimal policies iteratively, given a perfect model of the environment as a Markov Decision Process (MDP). Unfourtunately, their high computational expense coupled with the fact that most environments fail to reach this conditions of a perfect model, they are of limited use in practice. However, the concepts DP introduces lay the foundation for understanding other RL algorithms — In fact, most reinforcement learning algorithms can be seen as approximations to DP. DP algorithms work to find optimal policies by iteratively evaluating solutions for Bellman equations, and then attempting to improve upon them by finding a policy that maximizes received reward.