У нас вы можете посмотреть бесплатно Mastering LLMs: How Fine-Tuning Turns General AI into a Specialist или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In our previous video, we discussed how pre-trained models act as a massive "schooling" phase for AI. But while models like GPT-4 are incredible at general tasks, they often struggle when faced with specific industries or private data. In this video, we introduce the solution: Fine-Tuning. What you will learn in this video: • The Problem with Generalists: We explain why pre-trained models are "jacks of all trades but master of none," and why they fail at specific tasks like interpreting complex medical literature or internal business documents,. • What is Fine-Tuning? Learn how we bridge the gap between generic models and unique requirements. It isn't about starting from scratch; it is the process of "adjusting the parameters" of an existing model to fit a specific use case,. • The Power of Transfer Learning: We break down the concept of Transfer Learning, where a model leverages what it already knows to learn new tasks faster—similar to how a pianist can easily learn to play the organ. • Efficiency & Cost: Discover why fine-tuning requires a much smaller dataset and fewer computational resources than training a model from scratch,. • The Risks: We cover the critical challenges, including Overfitting (where a model memorizes data rather than understanding it) and the trade-off between becoming a specialist and losing general versatility,. The Bottom Line: Fine-tuning allows smaller organizations to build powerful, tailored AI solutions without needing the budget of a tech giant. It transforms a model that acts like a general student into a specialized expert,. #LLM #FineTuning #ArtificialIntelligence #MachineLearning #TransferLearning #AIExplained #TechEducation #DataScience #DeepLearning #GPT4