У нас вы можете посмотреть бесплатно Limit of Greatest Integer Function | Greatest Integer Function, Limits and its Graph | Calculus или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video we will learn about the Greatest Integer Function (Floor function) and also its limit. The greatest integer function is a function that gives the largest integer which is less than or equal to the number x. This function is denoted by [x] or ⌊x⌋ or ⟦x⟧. We will round off the given number to the nearest integer that is less than or equal to the number itself. For example, [2.4] = 2 and [−2.4] = −2. The operation of truncation generalizes this to a specified number of digits: truncation to zero significant digits is the same as the integer part. Carl Friedrich Gauss introduced the square bracket notation [x] in his third proof of quadratic reciprocity (1808). This remained the standard in mathematics until Kenneth E. Iverson introduced, in his 1962 book A Programming Language, the names "floor" and "ceiling" and the corresponding notations ⌊x⌋ and ⌈x⌉. Both notations are now used in mathematics, although Iverson's notation will be followed in this article.