У нас вы можете посмотреть бесплатно Machine learning-based fault detection and preliminary diagnosis for terminal air-handling units или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
"Title: Machine learning-based fault detection and preliminary diagnosis for terminal air-handling units Authors: Rajabi, Farivar (1); El Mokhtari, Karim (1,2); McArthur, J. J. (1) Affiliation: 1: Toronto Metropolitan University (formerly Ryerson), Canada; 2: FuseForward Solutions Group, Canada Keywords: Smart Buildings, Fault Detection and Diagnosis, Air-Handling Units, Machine Learning, Proof-of-Concept Session: Data Integration Methods Paper Link: 10.35490/EC3.2023.213 Abstract: With the advent of Artificial Intelligence (AI) powered classification techniques, data-driven Fault Detection and Diagnosis (FDD) methods have become increasingly prominent in smart building implementation. Of these, cluster analysis is particularly promising for Building management system (BMS) data. This paper presents an unsupervised learning-based strategy for detecting faults in terminal air handling units as well as the systems serving them. Historical sensor data is pre-processed with PCA to reduce dimensions, followed by OPTICS clustering, which is compared with k-means. OPTICS outperformed the latter, readily identifying noise and had high accuracy across all seasons."