У нас вы можете посмотреть бесплатно This AI Can Generate Animation for Game Characters! Dataset and Training Explained. или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
I found this AnimationGPT, an AI that can generate combat-style character animations based on text input. In this video, I’ll show you some demos and tell how they trained this AI. AnimationGPT is now available on their website and GitHub. You don’t need programming skills to try it out on the website; if you’d like to change the code or data, then Github is a better option. Chapters: 0:00 Quick Demo 0:30 Motivation 1:24 More Examples 1:44 Training Data 3:29 Model Selection 5:37 Model Evaluation 6:34 Industry Insights 7:54 Related Works 8:36 Model Limitations - The video explains Animation GPT, an AI tool that generates combat-style character animations based on text input. The user types detailed instructions, and within seconds, the tool produces animations. This approach is especially useful in gaming, where it enhances immersion through diverse character actions. Current datasets like Human ML 3D, though useful, focus mainly on basic human activities. Animation GPT addresses this gap by generating specific game-related actions using labeled datasets and machine learning models. The video details the process of generating and labeling animations, highlighting attributes such as motion type, weapon type, and speed. The AI model they chose, Motion GPT, uses a T5 language model to better understand text and generate accurate actions without excessive randomness, unlike diffusion models which are less suited for motion generation. The model converts continuous action sequences into tokens, allowing it to generate realistic and physics-compliant motions. The video concludes with a discussion on the scarcity and fragmentation of 3D data, despite advancements like the AMASS dataset. While 2D datasets are more standardized, 3D animation data remains less cohesive, limiting the consistency of AI-generated animations.