У нас вы можете посмотреть бесплатно Diffusion Models Explainer. Stable Diffusion 3. The Straight Line to Realism. или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
For years, we’ve been told that AI creates art by 'denoising'—essentially carving a statue out of a marble block of static. But what if the path we’ve been taking to get there is unnecessarily crooked? Docs: https://www.bytegoose.com/learning Today, we’re diving into a breakthrough from the team at Stability AI that’s fundamentally changing the math of imagination. We’re moving away from the chaotic curves of traditional diffusion and looking at Rectified Flow—a method that connects noise to data in a perfectly straight line. But it’s not just about the geometry. We’re talking about a new transformer architecture that finally treats text and images as equal partners, leading to better typography, smarter spatial logic, and images that don't just look real—they feel right to the human eye. In this episode, we’re breaking down: Why 'straight lines' are the secret to faster, sharper generation. How biasing noise sampling towards what humans actually see changes the game. And why the future of text-to-image synthesis might just depend on letting different modalities have their own 'space' to think. Whether you're a latent space explorer or just someone wondering why AI is suddenly getting so much better at spelling, this is an episode you don’t want to miss. Let’s dive into the flow.