• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Intro to Limits | Calculus - Nerdstudy скачать в хорошем качестве

Intro to Limits | Calculus - Nerdstudy 8 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Intro to Limits | Calculus - Nerdstudy
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Intro to Limits | Calculus - Nerdstudy в качестве 4k

У нас вы можете посмотреть бесплатно Intro to Limits | Calculus - Nerdstudy или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Intro to Limits | Calculus - Nerdstudy в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Intro to Limits | Calculus - Nerdstudy

So your Calculus journey begins. What is a limit? How do you find the limit? What does this "limit" thing really mean anyways? Many people have already done calculus videos, most of which haven't gone into detail enough to actually achieve a deep understanding of the material (the kind of deep understanding needed for you to perform well in your classes). Nerdstudy has taken on an IN-DEPTH approach to AP Calculus, and our mission is make each lesson as detailed and intuitive as a lesson could possibly be. Stay tuned for our new AP Calculus series! -- So far in mathematics, we are used to listening to questions such as, when 'x' equals 1, what is 'y'? So for something like that we know right away how to answer this. We look at 1 for 'x' and we see that 'y' is 2. That was a graphical way to do it, the equation way to do that would be to simply substitute 1 for 'x' and we would get 1 + 1, for this equation, equals 2. Now, the study of Calculus pertains to this word called "limits," and limits would be the introduction to calculus. Now limits are all about the idea of "Approaching." We're not going to look at what 'y' is when 'x' is 1. We're now going to look at what 'y' seems to be approaching when 'x' is approaching 1. So one way for us to understand this is by taking a look at the graph and maybe making a table of information, so that we can think about what it would mean to approach a number. So since our equation is x +1, we can actually take a look at what an 'x' of 0.8 would give us. And if we put 0.8 + 1, we would actually get 1.8. So what we did here is... I just started off with a number that's fairly close to 1. And it was just a random arbitrary number, but the idea of approaching would not really be fulfilled unless we do, at least, more than 1 set of values. 0.8 might be near 1, but we can now say that we are approaching 1 when we get closer to 1 from 0.8. So let's try, maybe, 0.999. This is a lot closer to 1. And we see that the 'y' value is now 1.999. And we can see that it seems like as 'x' is approaching 1, 'y' seems to be approaching a number closer to two. Now, if you thought for a moment that we are not approaching a number closer to 2, all you would have to do is to try another 'x' that is even closer to 1. You could actually repeat this many many times, but of course we're not going to do it too many times in this lesson, but the idea is this: If you're getting closer and closer to 1 for 'x' and for your 'y' it seems to be getting closer and closer to a number, in this case it becomes extremely obvious that it seems to be getting closer and closer to 2. Now this is an interesting thing that we want to take a look at before we move on. We we just did was this: we actually got closer to 1 from the left side. So we get closer to 1 from numbers lower than 1. The idea of getting closer to a number can easily happen from the opposite direction, so numbers greater than 1 getting close to 1. So instead of going this way, we could have also looked at the idea of closer going this way. So if you took a number, for example, 1.15 that is fairly close to 1, you would have gotten a 'y' value of 2.15. Now again, we want to think about when 'x' is approaching 1, what is 'y' approaching. So what we do is we get closer to 1 from 1.15, which would be let's say 1.00001. And we would get a 'y' value of 2.0001. So if you look at what happened to our 'y', it's pretty close to 2 all of a sudden. And you know right away that if you get even closer to 1 for 'x' you would probably get even closer to 2 for 'y.' So, by the use of this table of values, and also just by visually looking at the graph that we have, we can see then that every single time we take an 'x,' that is close to 1 and then even closer to 1, it seems like we are certainly getting closer and closer to 2. Now the problem with this example, and maybe we shouldn't even say that it's a problem, but this example doesn't actually help us to distinguish the difference between when x is equal to 1, and when x is approaching 1. The first question is really asking us, when 'x' is equal to 1, what is 'y?' So we're looking at no other points but exactly when x is exactly that one number, which is 1. And we know exactly that 'y' is equal to 2. The section question is really asking us, when 'x' is approaching 1... so basically the idea of approaching would be: every number near 1, getting closer and closer to 1 but not 1 itself ... in this case, what is 'y' approaching? The second question is one where we will always ignore this table of values.

Comments
  • Limits that Do Not Exist | Calculus - Nerdstudy 8 лет назад
    Limits that Do Not Exist | Calculus - Nerdstudy
    Опубликовано: 8 лет назад
  • What's so special about Euler's number e? | Chapter 5, Essence of calculus 8 лет назад
    What's so special about Euler's number e? | Chapter 5, Essence of calculus
    Опубликовано: 8 лет назад
  • The essence of calculus 8 лет назад
    The essence of calculus
    Опубликовано: 8 лет назад
  • Вся ВЫСШАЯ МАТЕМАТИКА за 12 ЧАСОВ с Нуля и до Формулы Тейлора! Математический Анализ 1-й Семестр! Трансляция закончилась 2 месяца назад
    Вся ВЫСШАЯ МАТЕМАТИКА за 12 ЧАСОВ с Нуля и до Формулы Тейлора! Математический Анализ 1-й Семестр!
    Опубликовано: Трансляция закончилась 2 месяца назад
  • Calculus (Grade 12, AP, Year 1 University) - Nerdstudy
    Calculus (Grade 12, AP, Year 1 University) - Nerdstudy
    Опубликовано:
  • Странности фронта последних недель 9 часов назад
    Странности фронта последних недель
    Опубликовано: 9 часов назад
  • Numberphile vs. Математика: правда о 1+2+3+...=-1/12 8 лет назад
    Numberphile vs. Математика: правда о 1+2+3+...=-1/12
    Опубликовано: 8 лет назад
  • 3-HOUR STUDY WITH ME | Hyper Efficient, Doctor, Focus Music, Pomodoro 50-10 6 месяцев назад
    3-HOUR STUDY WITH ME | Hyper Efficient, Doctor, Focus Music, Pomodoro 50-10
    Опубликовано: 6 месяцев назад
  • What is Calculus Used For? | Jeff Heys | TEDxBozeman 13 лет назад
    What is Calculus Used For? | Jeff Heys | TEDxBozeman
    Опубликовано: 13 лет назад
  • Введение в пределы (НэнсиПи) 7 лет назад
    Введение в пределы (НэнсиПи)
    Опубликовано: 7 лет назад
  • Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности 6 месяцев назад
    Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности
    Опубликовано: 6 месяцев назад
  • Матан за час. Шпаргалка для первокурсника. Высшая математика 6 лет назад
    Матан за час. Шпаргалка для первокурсника. Высшая математика
    Опубликовано: 6 лет назад
  • Calculus 1
    Calculus 1
    Опубликовано:
  • Атака на кортеж правительства / Заговор против президента 2 часа назад
    Атака на кортеж правительства / Заговор против президента
    Опубликовано: 2 часа назад
  • Calculus, what is it good for? 7 лет назад
    Calculus, what is it good for?
    Опубликовано: 7 лет назад
  • Почему реактивный двигатель не плавится? [Veritasium] 2 дня назад
    Почему реактивный двигатель не плавится? [Veritasium]
    Опубликовано: 2 дня назад
  • Limit Laws | Pt.2 (Product Law, Constant Multiple Law, Quotient Law)- Nerdstudy 8 лет назад
    Limit Laws | Pt.2 (Product Law, Constant Multiple Law, Quotient Law)- Nerdstudy
    Опубликовано: 8 лет назад
  • Быстрое преобразование Фурье (БПФ): самый гениальный алгоритм? 5 лет назад
    Быстрое преобразование Фурье (БПФ): самый гениальный алгоритм?
    Опубликовано: 5 лет назад
  • Your brain wasn't built to hold this much information | Richard Cytowic 3 дня назад
    Your brain wasn't built to hold this much information | Richard Cytowic
    Опубликовано: 3 дня назад
  • Что нужно, чтобы освоить дифференциальные уравнения 2 месяца назад
    Что нужно, чтобы освоить дифференциальные уравнения
    Опубликовано: 2 месяца назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5