У нас вы можете посмотреть бесплатно David Ben-Zvi | Electric-Magnetic Duality for Periods and L-functions или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
2/24/2021 Colloquium David Ben-Zvi (U Texas) Title: Electric-Magnetic Duality for Periods and L-functions Abstract: I will describe joint work with Yiannis Sakellaridis and Akshay Venkatesh, in which ideas originating in quantum field theory are applied to a problem in number theory. A fundamental aspect of the Langlands correspondence -- the relative Langlands program -- studies the representation of L-functions of Galois representations as integrals of automorphic forms. However, the data that naturally index the period integrals (spherical varieties for G) and the L-functions (representations of the dual group G^) don't seem to line up. We present an approach to this problem via the Kapustin-Witten interpretation of the [geometric] Langlands correspondence as electric-magnetic duality for 4-dimensional supersymmetric Yang-Mills theory. Namely, we rewrite the relative Langlands program as duality in the presence of supersymmetric boundary conditions. As a result, the partial correspondence between periods and L-functions is embedded in a natural duality between Hamiltonian actions of the dual groups.