• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

C. Seshadhri | Studying the (in)effectiveness of low dimensional graph embeddings скачать в хорошем качестве

C. Seshadhri | Studying the (in)effectiveness of low dimensional graph embeddings 4 years ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
C. Seshadhri | Studying the (in)effectiveness of low dimensional graph embeddings
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: C. Seshadhri | Studying the (in)effectiveness of low dimensional graph embeddings в качестве 4k

У нас вы можете посмотреть бесплатно C. Seshadhri | Studying the (in)effectiveness of low dimensional graph embeddings или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон C. Seshadhri | Studying the (in)effectiveness of low dimensional graph embeddings в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



C. Seshadhri | Studying the (in)effectiveness of low dimensional graph embeddings

2/17/2021 Colloquium Speaker: C. Seshadhri (UC Santa Cruz) Title: Studying the (in)effectiveness of low dimensional graph embeddings Abstract: Low dimensional graph embeddings are a fundamental and popular tool used for machine learning on graphs. Given a graph, the basic idea is to produce a low-dimensional vector for each vertex, such that "similarity" in geometric space corresponds to "proximity" in the graph. These vectors can then be used as features in a plethora of machine learning tasks, such as link prediction, community labeling, recommendations, etc. Despite many results emerging in this area over the past few years, there is less study on the core premise of these embeddings. Can such low-dimensional embeddings effectively capture the structure of real-world (such as social) networks? Contrary to common wisdom, we mathematically prove and empirically demonstrate that popular low-dimensional graph embeddings do not capture salient properties of real-world networks. We mathematically prove that common low-dimensional embeddings cannot generate graphs with both low average degree and large clustering coefficients, which have been widely established to be empirically true for real-world networks. Empirically, we observe that the embeddings generated by popular methods fail to recreate the triangle structure of real-world networks, and do not perform well on certain community labeling tasks. (Joint work with Ashish Goel, Caleb Levy, Aneesh Sharma, and Andrew Stolman.)

Comments
  • André Luiz de Gouvêa | The Brave Nu World 4 years ago
    André Luiz de Gouvêa | The Brave Nu World
    Опубликовано: 4 years ago
    282
  • Gradient descent, how neural networks learn | DL2 7 years ago
    Gradient descent, how neural networks learn | DL2
    Опубликовано: 7 years ago
    7865473
  • Nima Arkani-Hamed | Cosmology and Cosmological Polytopes I 4 days ago
    Nima Arkani-Hamed | Cosmology and Cosmological Polytopes I
    Опубликовано: 4 days ago
    1011
  • Introduction to Graph Theory: A Computer Science Perspective 4 years ago
    Introduction to Graph Theory: A Computer Science Perspective
    Опубликовано: 4 years ago
    658675
  • Structural Equation Modeling: what is it and what can we use it for? (part 1 of 6) 8 years ago
    Structural Equation Modeling: what is it and what can we use it for? (part 1 of 6)
    Опубликовано: 8 years ago
    501728
  • ggplot for plots and graphs. An introduction to data visualization using R programming 4 years ago
    ggplot for plots and graphs. An introduction to data visualization using R programming
    Опубликовано: 4 years ago
    521197
  • 4 Hours Chopin for Studying, Concentration & Relaxation 3 years ago
    4 Hours Chopin for Studying, Concentration & Relaxation
    Опубликовано: 3 years ago
    18934423
  • But what is a neural network? | Deep learning chapter 1 7 years ago
    But what is a neural network? | Deep learning chapter 1
    Опубликовано: 7 years ago
    19673153
  • Naive Bayes, Clearly Explained!!! 5 years ago
    Naive Bayes, Clearly Explained!!!
    Опубликовано: 5 years ago
    1223958
  • Intense Study - 40Hz Gamma Binaural Beats to Increase Productivity and Focus 1 year ago
    Intense Study - 40Hz Gamma Binaural Beats to Increase Productivity and Focus
    Опубликовано: 1 year ago
    8234699

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5