У нас вы можете посмотреть бесплатно Beyond Tokens: Dynamic Large Concept Models (DLCM) & Latent Reasoning Explained или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this episode of SciPulse, we dive deep into "Dynamic Large Concept Models: Latent Reasoning in an Adaptive Semantic Space." Current Large Language Models (LLMs) have a fundamental inefficiency: they apply the same amount of computing power to every single token, whether it’s a complex scientific concept or a simple connector word. This token-uniform approach wastes valuable capacity. Today, we explore a proposed solution: Dynamic Large Concept Models (DLCM). This framework introduces a hierarchical approach that shifts computation from raw tokens to a compressed "concept space." By learning semantic boundaries and grouping tokens into variable-length concepts, DLCM allows the model to reason more efficiently where it matters most. 📌 Key Topics Covered in This episode: The Problem with Uniformity: Why treating every token equally holds back LLM efficiency. What is DLCM? Understanding the move from token-level to concept-level processing. Compression-Aware Scaling Laws: How to disentangle token capacity from reasoning capacity. Decoupled μP Parametrization: Techniques for stable training across different widths and compression regimes. Performance Results: How DLCM achieves a +2.69% improvement on zero-shot benchmarks under matched inference FLOPs. If you are interested in the next generation of efficient, reasoning-heavy language models, this paper breakdown is for you. 📄 Read the Original Paper: Dynamic Large Concept Models: Latent Reasoning in an Adaptive Semantic Space 🔗 https://arxiv.org/abs/2512.24617?utm_... 🎧 Listen to the audio discussion on Spotify (perfect for your commute): https://open.spotify.com/episode/0HaD... 🎓 Educational Disclaimer: This episode is created for educational and informational purposes to summarize and explain the concepts presented in the referenced research paper. It is not a replacement for reading the original work. All credit for the research goes to the original authors. 🔔 Subscribe to SciPulse for more breakdowns of cutting-edge AI research! #DynamicLargeConceptModels #DLCM #LargeLanguageModels #AIResearch #DeepLearning #MachineLearning #NLP #ArtificialIntelligence #LLMEfficiency #SciPulse #ComputerScience #TechNews #NeuralNetworks #LatentReasoning