У нас вы можете посмотреть бесплатно Single Cell Boost Converter Circuit using Coin Cell или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
$2 for PCB Prototype (Any Color): https://jlcpcb.com Check out the complete DIY project here: https://circuitdigest.com/electronic-... Brief About Single Cell Boost Converter Circuit: Battery cells are the most commonly used energy source to power portable electronics. Be it a simple alarm clock or an IoT sensor node or a complex mobile phone everything is powered by batteries. In most cases these portable devices need to have a small form factor (package size) and hence it is powered by a single cell battery, like the popular CR2032 Lithium cell or the other 3.7V lithium polymer or 18650 cells. These cells pack in high energy for its size but a common disadvantage with these cells is with its operating voltage. A typical lithium battery has a nominal voltage of 3.7V, but this voltage can go down as low as 2.8V when fully drained and as high as 4.2V when fully charged which is not very desirable for our electronics designs which either work with regulated 3.3V or 5V as operating voltage. This brings in the need for a boost converter which can take in this variable 2.8V to 4.2V as input voltage and regulate it to constant 3.3V or 5V. Thankfully though there exists an IC called BL8530 which does exactly the same with very minimum external components. So, in this project we will build a low cost 5V booster circuit that provides a constant regulated output voltage of 5V from a CR2032 coin cell; we will also design a compact PCB for this boost converter so that it can be used in all our future portable projects. The maximum output current of the boost converter will be 200mA which is good enough to power basic microcontrollers and sensors. Another advantage of this circuit is that, if your project requires a regulated 3.3V instead of 5V the same circuit can also be used to regulate 3.3V by just swapping one component. This circuit can also work as Power Bank to power up small boards like Arduino, STM32, MSP430 etc. Visit https://circuitdigest.com for many such electronics projects, circuits, articles and news.