У нас вы можете посмотреть бесплатно Why K-Means Fails: Solving Complex Clusters with DBSCAN | Machine Learning Masterclass или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we deep-dive into DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and understand why it works better than K-Means for complex and irregular datasets. We start by revising the limitations of K-Means, then gradually build intuition for DBSCAN using density, radius (ε), and minimum points. The session includes clear diagrams, real-life intuition, parameter tuning (eps & min_samples), evaluation metrics, and full Python implementation using real datasets. This video is especially useful for Machine Learning, Data Mining, and Clustering Algorithms in exams, labs, and interviews. ⏱️ Timestamps 00:00 – Introduction to DBSCAN 00:14 – Why K-Means fails (assumptions & limitations) 00:59 – Ring-shaped & complex datasets example 01:56 – Intuition of DBSCAN using density 02:31 – Island & water analogy for clustering 03:00 – Noise detection in DBSCAN 03:50 – What is DBSCAN? (Definition & features) 04:10 – Moon-shaped dataset: K-Means vs DBSCAN 04:48 – eps radius & density concept 05:07 – Core point, Border point, Noise point 06:36 – Real-world applications of DBSCAN 06:49 – DBSCAN parameters: eps & min_samples 07:32 – Core vs Border vs Noise (diagram explanation) 09:07 – How to find optimal eps (k-distance graph) 10:15 – Types of points in DBSCAN (formal definition) 11:20 – Step-by-step working of DBSCAN algorithm 12:05 – Why scaling is required (StandardScaler) 13:31 – Silhouette Score (cluster quality measure) 15:18 – Adjusted Rand Index (ARI) explained 16:45 – DBSCAN vs K-Means comparison 17:06 – Dataset overview (Customer & Stress data) 17:32 – Python code: imports & preprocessing 18:42 – Scaling customer spending dataset 19:25 – K-Means clustering implementation 19:59 – DBSCAN clustering implementation 21:42 – Visualization: K-Means vs DBSCAN 22:43 – Stress dataset clustering explanation 23:13 – eps tuning & ARI-based model selection 25:49 – Final visualization & interpretation 28:10 – Limitations of DBSCAN 29:05 – When to use DBSCAN vs K-Means 29:25 – Final summary & conclusion #DBSCAN #MachineLearning #ClusteringAlgorithms #DataMining #KMeans #PythonForML #ScikitLearn #UnsupervisedLearning #MLTutorial #EngineeringStudents #DataScience #DensityBasedClustering