У нас вы можете посмотреть бесплатно The Derivative Formula Explained: From Secant Lines to Tangent Lines или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
How do you find the slope at a single point when slope requires two points? This video reveals the elegant solution: start with two points, then use limits to bring them infinitely close together. You'll see exactly how the difference quotient transforms into the derivative formula. 📚 Key concepts covered: • The difference quotient [f(x₀ + h) - f(x₀)] / h as the slope of a secant line • Why we can't just plug in h = 0 (the 0/0 problem) • How limits let us approach zero without reaching it • The geometric meaning: secant lines rotating into tangent lines • Complete worked example with y = x² at x = 3 ━━━━━━━━━━━━━━━━━━━━━━━━ 📖 ORIGINAL SOURCE ━━━━━━━━━━━━━━━━━━━━━━━━ This video distills concepts from: • Calculus 1 Lecture 1.5: Slope of a Curve,... Full credit to the original creator. Please visit the source for the complete lecture. ━━━━━━━━━━━━━━━━━━━━━━━━ 🎓 About Lecture Distilled ━━━━━━━━━━━━━━━━━━━━━━━━ Long lectures. Short videos. Core insights. We transform lengthy academic lectures into focused concept videos that respect your time while preserving the essential ideas. 🔗 GitHub: https://github.com/Augustinus12835/au... #calculus #derivatives #limits #mathematics #mathtutorial #calculushelp #tangentline #differentialcalculus