У нас вы можете посмотреть бесплатно Goal Oriented Action Planning - Optimizations & Extensions или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
GOAP - letting characters plan actions oriented at goals. In the last part of the GOAP tutorial series we will talk about AlphaGO Zero to give some inspiration for more complex GOAP applications and optimizations of the exponential runtime complexity and the space complexity. We consider A* for planning as a solution but the requirements like a heuristic, iterative deepening A* and the infinite search space make it unpractical and overkill to use A* as planning algorithm. I propose a load balancing / scheduling approach for GOAP. In the second part we look at Google's AlphaGO Zero and its planning capabilities which serve as inspiration for extension of our GOAP system. We look at action choosing to simplify search trees, considering the opponent's moves and learned discontentment functions or rating functions as opposed to handcrafted discontentment functions. These discontentment functions can be learned by making them linear weighted functions and then machine learning the weights. Get the implementations: C# (Unity) implementation: https://github.com/Elias-W1/GOAP-C-Sharp Python implementation: https://github.com/Elias-W1/GOAP-Python Have fun! :) Music by Millennials Melody