У нас вы можете посмотреть бесплатно What does this f'(x) graph tell you about f(x)? или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
High school math teacher explains what an f'(x) graph tells you about f(x)! f'(x) is the derivative of f(x), which means it represents the slope of the tangent line at each point on f(x). -If f'(x) is positive, then f(x) is increasing. -If f'(x) is negative, then f(x) is decreasing -If f'(x) changes from positive to negative, f(x) has a relative maximum at that x value. -If f'(x) changes from negative to positive, f(x) has a relative minimum at that x value. -If f''(x), or the derivative of f'(x) is equal to 0 or is undefined AND changes signs, then f(x) has a point of inflection at that x value. -If f''(x), or the derivative of f'(x), is positive, then f(x) is concave up. -If f''(x), or the derivative of f'(x), is negative, then f(x) is concave down. Subscribe: / @calculusbychristee Thank you for watching! Please comment below about other topics you would like to see in future videos!