У нас вы можете посмотреть бесплатно FathomDEM, a new global 30 m DTM или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Accurate digital elevation models (DEMs) are foundational inputs for a vast array of geomorphometry applications, including natural hazard modeling, glaciology, and infrastructure planning. However, existing global DEMs, such as Copernicus DEM (COPDEM), often contain surface features like trees and buildings, limiting their effectiveness as Digital Terrain Models (DTMs). This talk introduces FathomDEM, a new global 30 m DTM created using a novel machine-learning methodology. We utilized a hybrid vision transformer model within a U- Net architecture to perform pixel-wise regression, analyzing and correcting the height biases in COPDEM. This approach differs significantly from previous methods (like the pixel-by-pixel correction used for FABDEM) by leveraging 2D spatial information (context) as an inductive basis, essentially employing 'computer vision' to achieve more spatially coherent and robust corrections. FathomDEM was trained on extensive, diverse LiDAR reference data and has been rigorously validated, demonstrating: Improved Accuracy, surpassing the accuracy of existing best-ranked global DEMs; Excellent Performance in Specific Landscapes, showing reduced error even when compared to specialized coastal DEMs (e.g., DeltaDTM); High Utility in Downstream Tasks, when utilised in flood inundation modeling, FathomDEM achieves increased accuracy, approaching the performance levels of models derived from high-resolution LiDAR data. Join this session for an informal discussion on the methodology behind FathomDEM, its novel use of ML for artifact removal, and its potential to improve applied geomorphometry tasks globally.