У нас вы можете посмотреть бесплатно Belief and Credence: Bridging Doxastic Logic and Probability Theory - Matheus Rui | UNILOG 2022 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Belief Revision Workshop at UNILOG 2022 Orthodox Academy of Crete, Greece. April 7, 2022 Organizer: Rafael Testa | https://rafaeltesta.com/ Belief and Credence: Bridging Doxastic Logic and Probability Theory Matheus Rui (Federal University of Santa Catarina – Brazil) https://ufsc.academia.edu/MatheusDeLi... Formal epistemology literature has been fighting for a better oriented, and personally preferred, representation of a doxastic state. In one hand, we have a traditionally recognized notion denominated as “binary belief”, or just belief (simpliciter). On the other hand, we have a more idiosyncratic quantitative notion of “credence”, also known as “subjective probability”. Traditional epistemology has treated belief as an indispensable constituent for knowledge, while credence is the building block of Bayesian Epistemology. Some formal epistemologists are devoting themselves to provide an explanation of how these two concepts are related. My aim here is to draw attention to some endeavors to bridge these two notions by means of a “bridge principle”. I shall focus on two approaches: Leitgeb’s “Stability Theory of Belief” and Lin & Kelly’s “Tracking Theory”. In its synchronic aspect, both of them have a nearly similar approach for a consistent (and deductively closed) bridge principle. The mainly breaking point between them concerns the diachronic portion of the bridge principle, more specifically, on the theory of belief revision for binary belief. While Leitgeb’s version is based on AGM theory, Lin & Kelly’s claims that only their approach, based on a non-monotonic theory for belief revision, is able to properly track bayesian conditional reasoning and, therefore, be a well constructed bridge. References: [1] Alchourrón, C., Gärdenfors, P., Makinson, D.: On the Logic of Theory Change: Partial meet contraction and revision functions. Journal of Symbolic Logic, JSTOR 50(2), 510–530 (1985). [2] Leitgeb, H.: The Stability of Belief: How Rational Belief Coheres with Probability. Oxford University Press, New York (2017). [3] Lin, H., Kelly, K.: A Geo-Logical Solution to the Lottery Paradox, with Applications to Conditional Logic. Synthese, Springer 186(2), 531–575, (2012a). [4] Lin, H., Kelly, K.: Propositional Reasoning that Tracks Probabilistic Reasoning. J Philos Logic, 41(0), 957–981 (2012b). #BeliefRevision #UNILOG2022