У нас вы можете посмотреть бесплатно Getting started with Dagster | Create Python ETL | Orchestrate ETL Pipelines with Dagster или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we will cover an exciting new application called Dagster. It used to orchestrate your Python pipelines. Dagster has a user-friendly user interface and gives us better options of logging and history of the jobs we run with it. Dagster comes as a python library and you can quickly get setup and running with it. Get started with Dagster in just three quick steps: Install Dagster, Define Ops and Materialize the assets. Create a virtual environment: python -m venv env Activate the virtual environment: env\Scripts\activate To install Dagster into an existing Python environment, run: pip install dagster dagit For projects using newer version 1.1.20 or 0.17.20 the command to create a new project has changed. To get started, you can run: pip install dagster dagster project scaffold --name my-dagster-project Additional libraries required: Pandas, psycopg2 Create a new project: dagster new-project etl CLI commands to run Dagit and daemon (run these commands in the same folder where the workspace.yml file is located): dagit dagster-daemon run Access Dagit UI on port 3000: http://127.0.0.1:3000 Link to code, GitHub: https://github.com/hnawaz007/pythonda... Subscribe to our channel: / haqnawaz --------------------------------------------- Follow me on social media! GitHub: https://github.com/hnawaz007 Instagram: / bi_insights_inc LinkedIn: / haq-nawaz --------------------------------------------- #Python #ETL #Dagster Topics covered in this video: 0:00 - Introduction ETL with Dagster 1:17 - ETL Direct Acyclic Graph (DAG) 2:25 - Dagster Setup 3:32 - Dagster Project Overview 4:48 - Run Dagster 5:25 - Dagster UI Overview 6:47 - Write Python ETL Pipeline with Dagster 11:18 - Run ETL Pipeline from Dagster UI 12:55 - Run relatively Large dataset test