Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб Computational Antibody Discovery Symposium: Ben Holland (CTO, Antiverse) в хорошем качестве

Computational Antibody Discovery Symposium: Ben Holland (CTO, Antiverse) 1 год назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Computational Antibody Discovery Symposium: Ben Holland (CTO, Antiverse)

Computational Antibody Discovery: State of the Art Symposium, June 22, 2023 [Note: Playlist build in progress as of June 23.] Symposium Agenda Introduction - Janice Reichert (The Antibody Society); Konrad Krawczyk (Natural Antibody); Andrew Buchanan (AstraZeneca) Speaker 1) Pietro Sormanni (University of Cambridge). Third-generation approaches of antibody discovery and optimization 2) Tzvika Hartman (Biolojic Design). AI-driven design of smart therapeutics 3) Victor Greiff (University of Oslo). Computational developability profiling of antibody repertoire data 4) Sandeep Kumar (Boehringer Ingelheim). Biopharmaceutical Informatics: Syncretic use of computation and experimentation in discovery and development of biotherapeutics 5) Ben Holland (Antiverse). Machine learning-based design of antibodies against difficult targets Panel discussion. Ben Holland is a co-founder and Chief Technology Officer at Antiverse. Ben has an MEng in Engineering Science from the University of Oxford and experience in mathematical modelling, especially neural networks, and uses the generated data to train the machine learning system. Traditional lab-based antibody discovery techniques are sophisticated and powerful. Nevertheless, there are cases where they struggle, and computational methods can offer several advantages – especially when the two approaches are carefully combined. Antiverse integrates both approaches throughout its early-stage antibody discovery platform, which designs antibody candidates against difficult-to-drug targets, including GPCRs and ion channels. Through the combination of ML-designed target-specific antibody libraries with hyper-expressing cell lines, we facilitate the generation of diverse antibody candidates against traditionally difficult targets, opening up new therapeutic possibilities.

Comments