У нас вы можете посмотреть бесплатно CS310 Algorithms Lesson 3 | Randomized Algorithms или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This lecture, part of the CS310 Algorithms series at LUMS, transitions from deterministic strategies to randomized approaches for solving complex algorithmic problems. Key highlights include: Course Logistics: Updates on Homework 1 grading and upcoming midterm schedules [00:55]. Recap of Prune and Search: A review of the Median of Medians algorithm used to solve the Selection Problem (finding the k-th smallest element). The instructor explains how dividing the array into groups of five and finding the median of medians results in a linear time complexity O(n) through recursive analysis and convexity [03:11]. Introduction to Randomized Selection: Shifting from the deterministic ‘Median of Medians’ pivot to a randomized approach, where a pivot is selected uniformly at random [24:24]. Probability Foundations: To analyze randomized algorithms, the lecture covers essential probability concepts: Random Experiments & Sample Spaces: Defining outcomes and events [33:04]. Probability Distributions: Rules for assigning values to outcomes [34:55]. Random Variables & Expected Value: Mathematical definitions and calculating the weighted average of outcomes [37:38]. Linearity of Expectation: A crucial property for analyzing the sum of random variables [43:07]. Practical Lab - Asymptotic Notation with Z3: An in-class activity using the Z3 Solver library in Python to programmatically verify Big O, Big Omega, and Little o notations by encoding mathematical constraints into code [57:16].