• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Zillow (Zestimate): Data Science in Real Estate with AI and Analytics ( скачать в хорошем качестве

Zillow (Zestimate): Data Science in Real Estate with AI and Analytics ( 8 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Zillow (Zestimate): Data Science in Real Estate with AI and Analytics (
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Zillow (Zestimate): Data Science in Real Estate with AI and Analytics ( в качестве 4k

У нас вы можете посмотреть бесплатно Zillow (Zestimate): Data Science in Real Estate with AI and Analytics ( или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Zillow (Zestimate): Data Science in Real Estate with AI and Analytics ( в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Zillow (Zestimate): Data Science in Real Estate with AI and Analytics (

Zillow is one of the largest real estate and rental marketplaces in the world, with a database of 100 million homes in the US. The company pioneered data-driven, automated home value estimates with Zestimate. On this episode, we speak with Zillow's Chief Analytics Officer and Chief Economist, Dr. Stan Humphries, to learn how Zillow uses data science, statistics, artificial intelligence, and big data to make real estate predictions as part of the digital transformation of real estate. Dr. Stan Humphries is the chief analytics officer of Zillow Group, a portfolio of the largest and most vibrant real estate and home-related brands on Web and mobile. Stan is the co-author of the New York Times Best Seller “Zillow Talk: The New Rules of Real Estate.” Michael Krigsman is an industry analyst and host of CXOTALK For more information, see https://www.cxotalk.com/episode/data-... ------------------ Check out more CXOTALK episodes: https://cxotalk.com/episodes ------------------ Follow us on Twitter:   / cxotalk   ------------------- From the transcript: Stan Humphries: (01:31) I’ve been with Zillow since the very beginning back in 2005, when what became Zillow was just a glimmer in our eye. Back then, I worked a lot on just algorithms, and some part development pieces; kind of a lot of the data pieces within the organization. We launched Zillow in February of 2006, and back then, I think people familiar with Zillow now may not remember that between our first couple of years between 2006 and 2008, all you could find on Zillow was really all the public record information about homes and displayed on a map. And then, a Zestimate, which is an estimated the home value of every single home, and then a bunch of housing indices to help people understand what was happening to prices in their local markets. But, we really grew the portfolio of offerings to help consumers from there and added in ultimately For Sale listings, mortgage listings, a mortgage marketplace, a home improvement marketplace, and then, along the way, also brought in other brands. So now, Zillow Group includes not only Zillow brand itself, Zillow.com but also Trulia, as well as StreetEasy in New York, Naked Apartments, which is a rental website in New York, HotPads, and a few other brands as well. So it’s really kind of grown over the years and last month, all those brands combined got about 171 million unique users to them online. So, it’s been a lot of fun kind of seeing it evolve over the years. (06:13) How has the Zestimate changed? Stan Humphries: (06:19) if you look at when we first rolled out in 2006, the Zestimate was a valuation that we placed on every single home that we had in our database at that time, which was 43 million homes. And, in order to create that valuation in 43 million homes, it ran about once a month and we pushed a couple terabytes of data through about 34 thousand statistical models, which we thought was, and was, compared to what had been done previously, was an enormously more computationally sophisticated process. But if you flash forward to today; well actually I should just give you a context of what our accuracy was back then. Back in 2006 when we launched, we were at about 14% median absolute percent error on 43 million homes. So what we've done since, is we've gone from 43 million homes to 110 million homes today where we put valuations on all 110 million homes. And, we've driven our accuracy down to about 5% today which, we think, from a machine learning perspective, is actually quite impressive because those 43 million homes that we started with in 2006 tended to be in the largest metropolitan areas where there was a lot of transactional velocity. There were a lot of sales and price signals with which to train the models. (07:52) What's in the rest of, as we went from 43 million to 110, you're now getting out into places like Idaho and Arkansas where there are just fewer sales to look at. And, it would have been impressive if we had kept our error rate at 14% while getting out to places that are harder to estimate. But, not only did we more than double our coverage from 43 to 110 million homes but we also almost tripled our accuracy rate from 14% down to 5%. (08:22) Now, the hidden story of how we’re able to achieve that was basically by throwing enormously more data, collecting more data, and getting a lot more sophisticated algorithmically in what we are doing, which requires us to use more computers. Just to give a context, I said that back when we launched, we built 34 thousand statistical models every single month. Today, we update the Zestimate every single night and in order to do that, we generate somewhere between 7 and 11 million statistical models every single night, and then when we’re done with that process, we throw them away, and we repeat again the next night. So, it’s a big data problem.

Comments
  • Cognitive Automation in Supply Chain Management (SCM) at J&J (CxOTalk) 6 лет назад
    Cognitive Automation in Supply Chain Management (SCM) at J&J (CxOTalk)
    Опубликовано: 6 лет назад
  • AI Reality Check: What Works and What’s New Трансляция закончилась 3 месяца назад
    AI Reality Check: What Works and What’s New
    Опубликовано: Трансляция закончилась 3 месяца назад
  • 4 Hours Chopin for Studying, Concentration & Relaxation 4 года назад
    4 Hours Chopin for Studying, Concentration & Relaxation
    Опубликовано: 4 года назад
  • How to Apply Data Science & Machine Learning to Real Estate | PropertyQuants | Unissu REConnect 4 года назад
    How to Apply Data Science & Machine Learning to Real Estate | PropertyQuants | Unissu REConnect
    Опубликовано: 4 года назад
  • Managing Teams for Data Science, Analytics, and AI (CXOTalk # 326) 6 лет назад
    Managing Teams for Data Science, Analytics, and AI (CXOTalk # 326)
    Опубликовано: 6 лет назад
  • Mozart - Classical Music for Working, Studying & Brain Power 2 года назад
    Mozart - Classical Music for Working, Studying & Brain Power
    Опубликовано: 2 года назад
  • Mozart - Classical Music for Studying, Working & Brain Power 2 года назад
    Mozart - Classical Music for Studying, Working & Brain Power
    Опубликовано: 2 года назад
  • Andrew Ng: Enterprise AI Strategy (with Landing AI) - CxOTalk #365 6 лет назад
    Andrew Ng: Enterprise AI Strategy (with Landing AI) - CxOTalk #365
    Опубликовано: 6 лет назад
  • Escape AI Quicksand: Data Misuse, Misadventures, and Mal-Intent Трансляция закончилась 2 месяца назад
    Escape AI Quicksand: Data Misuse, Misadventures, and Mal-Intent
    Опубликовано: Трансляция закончилась 2 месяца назад
  • Snowflake's EVP of Product Talks Hard Truths on Agentic AI: Readiness, Governance, and AI Economics Трансляция закончилась 9 дней назад
    Snowflake's EVP of Product Talks Hard Truths on Agentic AI: Readiness, Governance, and AI Economics
    Опубликовано: Трансляция закончилась 9 дней назад
  • KDD2020 Real Estate Tutorial Part 1 - Intro and Commercial Real Estate Overview, Dr. Ron Bekkerman 5 лет назад
    KDD2020 Real Estate Tutorial Part 1 - Intro and Commercial Real Estate Overview, Dr. Ron Bekkerman
    Опубликовано: 5 лет назад
  • Eska Hity Grudzień 2025 🎧 Radio Eska Playlist – Najlepsze Brzmienia Vol.24 2 дня назад
    Eska Hity Grudzień 2025 🎧 Radio Eska Playlist – Najlepsze Brzmienia Vol.24
    Опубликовано: 2 дня назад
  • AI TechTalk LIVE with Nate & MIke #3 Трансляция закончилась 3 месяца назад
    AI TechTalk LIVE with Nate & MIke #3
    Опубликовано: Трансляция закончилась 3 месяца назад
  • How CEO Brian Niccol Plans to Restore the ‘Soul’ of Starbucks | WSJ Leadership Institute 4 часа назад
    How CEO Brian Niccol Plans to Restore the ‘Soul’ of Starbucks | WSJ Leadership Institute
    Опубликовано: 4 часа назад
  • The Economics of Real Estate 5 лет назад
    The Economics of Real Estate
    Опубликовано: 5 лет назад
  • Advice on Agentic AI: A Top Snowflake Exec Explains 5 дней назад
    Advice on Agentic AI: A Top Snowflake Exec Explains
    Опубликовано: 5 дней назад
  • СРОЧНО! КУЧЕР: 15 часов назад
    СРОЧНО! КУЧЕР: "Это просто позор". Что случилось на пресс-конференции Трампа и Зеленского
    Опубликовано: 15 часов назад
  • Positive JAZZ - Morning Music To Start The Day 5 лет назад
    Positive JAZZ - Morning Music To Start The Day
    Опубликовано: 5 лет назад
  • Как разработать стратегию данных для ИИ с директором по данным IBM (CXOTalk #793) 2 года назад
    Как разработать стратегию данных для ИИ с директором по данным IBM (CXOTalk #793)
    Опубликовано: 2 года назад
  • «Мессенджер Max — это МЕНТ в вашем телефоне» | Как безопасно звонить и обходить блокировки в России 4 месяца назад
    «Мессенджер Max — это МЕНТ в вашем телефоне» | Как безопасно звонить и обходить блокировки в России
    Опубликовано: 4 месяца назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5