У нас вы можете посмотреть бесплатно How to Retrieve Feature Names from Sklearn TruncatedSVD Object или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we delve into the process of retrieving feature names from a TruncatedSVD object in Scikit-learn. TruncatedSVD is a powerful dimensionality reduction technique often used in natural language processing and other data analysis tasks. Understanding how to extract feature names from this object is crucial for interpreting your results and enhancing your model's performance. Join us as we walk through the steps and provide practical examples to help you master this essential skill. Today's Topic: How to Retrieve Feature Names from Sklearn TruncatedSVD Object Thanks for taking the time to learn more. In this video I'll go through your question, provide various answers & hopefully this will lead to your solution! Remember to always stay just a little bit crazy like me, and get through to the end resolution. Don't forget at any stage just hit pause on the video if the question & answers are going too fast. Content (except music & images) licensed under CC BY-SA meta.stackexchange.com/help/licensing Just wanted to thank those users featured in this video: m.awad (https://stackoverflow.com/users/35996... Mikhail Korobov (https://stackoverflow.com/users/11479...) Trademarks are property of their respective owners. Disclaimer: All information is provided "AS IS" without warranty of any kind. You are responsible for your own actions. Please contact me if anything is amiss. I hope you have a wonderful day. Related to: #sklearn, #truncatedsvd, #featurenames, #machinelearning, #dimensionalityreduction, #python, #datascience, #featureextraction, #scikit-learn, #dataanalysis, #pca, #svd, #unsupervisedlearning, #modelinterpretation, #datapreprocessing, #featureselection, #machinelearningtutorial, #coding, #programming, #datavisualization