У нас вы можете посмотреть бесплатно Machine Learning Force Fields for Heterogeneous Catalysis, Lars Leon Schaaf, Univ. of Cambridge UK или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Machine learning force fields (MLFFs) are set to become an indispensable tool in computational catalysis. In this talk, we provide a detailed walkthrough on how to train an MLFF to accurately predict energy barriers for catalytic reaction pathways. We demonstrate the capabilities of the resulting interatomic potential that offers near ab-initio accuracy at a fraction of the cost. Specifically, we illustrate that MLFFs not only speed up routine catalytic tasks by orders of magnitude but also allow for a more realistic treatment of catalytic systems, identifying lower energy barriers and capturing finite temperature effects. We also present a Jupyter notebook that highlights the simplicity of training a state-of-the-art many-body equivariant graph neural network, namely MACE. The capacity of MLFFs to deepen our understanding of extensively studied catalysts emphasizes the importance of fast and accurate alternatives to direct ab-initio simulations. Automated training procedures are paramount in enhancing the accessibility of MLFFs for both academic and industrial applications, and for effective use of HPC resources.