У нас вы можете посмотреть бесплатно Phase 4: SVM [Anaconda] или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Max [i3-Versicherung] erklärt Euch im Video den praktischen Einstieg in die Titanic-Fallstudie und ins Data Science Tool „Anaconda / Jupyter Notebook“ (in der Version 2023-09). Ein Video zum Buch Data Science Training – Supervised Learning: Ein praktischer Einstieg ins überwachte maschinelle Lernen https://data-science.training/ Dieses Lehrbuch erklärt auf narrative und direkte Weise die wichtigen Zusammenhänge zwischen Data Science, Künstlicher Intelligenz und anderen Disziplinen und Domänen wie Datenschutz und Ethik, mit Fokus auf überwachtes Lernen (Supervised Learning). Wir begleiten Anna und Karl während ihrer Traineephase in einer internationalen Versicherung. Schritt für Schritt reifen sie zu Data Scientists, indem sie sich intensiv mit der Titanic-Katastrophe auseinandersetzen. Anna kann Python programmieren, während Karl ein grafisches Werkzeug (KNIME Analytics Platform) benutzt. Bei ihren Untersuchungen stoßen sie auf interessante Fakten und Mythen. Mit Unterstützung von Max und Sophia verarbeiten sie historische Daten, um Vorhersagen zu erstellen (Predictive Analytics). Dabei benutzen sie Methoden und Algorithmen des maschinellen Lernens. Begleitende Zusatzmaterialien (KNIME Workflows, Jupyter Notebooks, Erklärvideos) stehen den Lernenden online zur Verfügung. Und wenn in diesem Buch Anna und Karl sich auf Themen des überwachten Lernens konzentrieren, werden wir künftig mit ihnen noch weitere Gebiete der Data Science entdecken. Der Inhalt Einführung, Datenschutz vs. Datensicherheit, Datenethik, Datenformate, Skalenniveaus, Datenqualität, Explorative Datenanalyse, CRISP-DM Klassifikation, k-Nearest Neighbor, Partitionierung & Sampling, Kreuzvalidierung, Feature Engineering, Overfitting, Gütemaße, Konfusionsmatrix, ROC, AURC Naïve Bayes, Entscheidungsbäume, Pruning, Neuronale Netze, Multilayer Perzeptron, Support Vector Machine, Kernel-Trick, Logistische Regression, Regularisierung, Bias Variance Tradeoff, Ensemble Learning, Random Forest, Gradient Boosted Trees Regression vs. Korrelation, Methode der kleinsten Quadrate, Bestimmtheitsmaß, Fehlermaße, Lineare und polynomiale Regression, T-Test, Ridge, LASSO, Elastic-Net Mehrklassen-Klassifikation, Micro vs. Macro Averaging, Kreuzentropie, ungleiche Verteilungen, Equal Size Sampling, Bootstrapping, SMOTE Feature Selection, Genetische Algorithmen, Hyperparameteroptimierung Der Autor Stefan Selle ist seit 2007 Professor für Wirtschaftsinformatik an der Hochschule für Technik und Wirtschaft des Saarlandes und lehrt dort Daten- und Geschäftsprozessmanagement, Digitale Transformation, Software Engineering, Data Science und Künstliche Intelligenz. Factsheet Preis: 39,99 € Einband: Taschenbuch Verlag: Springer, Berlin ISBN: 9783662679593 #datascience #machinelearning #anaconda