У нас вы можете посмотреть бесплатно Giulia Fanti, PhD on Blockchain Incentive Mechanisms | Chainlink Research Reports или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
SquirRL: Automating Attack Discovery on Blockchain Incentive Mechanisms with Deep Reinforcement Learning by Giulia Fanti, Ph.D. from Carnegie Mellon University https://arxiv.org/pdf/1912.01798.pdf Dr. Giulia Fanti is an assistant professor of Electrical and Computer Engineering at Carnegie Mellon University. Her research focus is on the security and privacy implications of data transparency and sharing, including the algorithmic and theoretical foundations of distributed systems, machine learning, and privacy-enhancing technologies. https://www.andrew.cmu.edu/user/gfanti/ Chainlink Research Reports presents research that informs the smart contract and blockchain oracle industry presented by expert researchers building Chainlink, smart contract, and blockchain systems throughout the fields of computer science, economics, and many adjacent fields. Chainlink is the industry standard oracle network for powering hybrid smart contracts. Chainlink Decentralized Oracle Networks provide developers with the largest collection of high-quality data sources and secure off-chain computations to expand the capabilities of smart contracts on any blockchain. Learn more about Chainlink: Website: https://chain.link Docs: https://docs.chain.link Twitter: / chainlink Discord: https://discordapp.com/invite/aSK4zew Newsletter: https://chn.lk/newsletter Telegram: https://t.me/chainlinkofficial Talk to an expert: http://chn.lk/contact #chainlink #cs #blockchainresearch 0:00 Introduction 0:37 (Guilia Fanti Intro) 1:03 Blockchain Incentive Mechanisms 1:51 Handling Incentive Attacks 4:58 Incentives In Bitcoin 6:06 Selfish Mining 7:29 Markov Decision Process (MDP) 8:10 Value/Policy Iteration 9:16 Deep Reinforcement Learning 11:01 SquirRL 12:22 Bitcoin Selfish Mining 14:40 Selfish Mining w Multiple Players 17:08 Casper the Friendly Finality Gadget 19:40 Explaining Nash Equilibrium 21:05 Incentive Mechanism Analysis 22:47 Permissioned Blockchains 26:48 Machine Learning In Crypto 29:50 Other Consensus Models 30:33 How Scaling Affects Model