• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Francesco Bruzzesi - Bayesian ranking for tennis players in PyMC | PyData Amsterdam 2023 скачать в хорошем качестве

Francesco Bruzzesi - Bayesian ranking for tennis players in PyMC | PyData Amsterdam 2023 2 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Francesco Bruzzesi - Bayesian ranking for tennis players in PyMC | PyData Amsterdam 2023
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Francesco Bruzzesi - Bayesian ranking for tennis players in PyMC | PyData Amsterdam 2023 в качестве 4k

У нас вы можете посмотреть бесплатно Francesco Bruzzesi - Bayesian ranking for tennis players in PyMC | PyData Amsterdam 2023 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Francesco Bruzzesi - Bayesian ranking for tennis players in PyMC | PyData Amsterdam 2023 в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Francesco Bruzzesi - Bayesian ranking for tennis players in PyMC | PyData Amsterdam 2023

In this talk, we will explore the Bayesian Bradley Terry model implemented in PyMC. We will focus on its application for ranking tennis players, demonstrating how this probabilistic approach can provide an accurate and robust rankings, arguably better than the ATP ranking itself and the Elo rating system. By leveraging the power of Bayesian statistics, we can incorporate prior knowledge, handle uncertainty, and make better inferences about player abilities. Join us to learn how to implement the Bayesian Bradley Terry model in PyMC and discover its advantages for ranking tennis players. The Bradley Terry model is a powerful model to predict the outcome of a paired comparison, as a by-product we will be able to rank players based on their hidden (latent) ability scores. Traditionally, rankings have been based on simple win-loss records, which may not capture the true abilities of players due to variations in competition quality and sample size. By adopting a Bayesian framework, we can overcome these limitations and obtain more reliable rankings. In this talk, we will introduce the Bayesian Bradley Terry model and its underlying principles. We will explore how to encode the model in Python using the PyMC library. We will walk through the step-by-step implementation, highlighting key considerations and practical tips. To illustrate the model's effectiveness, we will showcase its application to ranking tennis players, and compare it with both the official ATP ranking and the ELO ranking system. Tennis provides an ideal domain for this analysis, as it involves head-to-head matches between players, allowing us to directly compare their abilities. By applying the Bayesian Bradley Terry model to historical tennis match data, we can generate rankings that better reflect players' true skills, accounting for factors such as opponent strength and match surface. Throughout the talk, we will emphasize a hands-on approach, providing code examples and demonstrations. Attendees will gain a solid understanding of the model, learn how to implement it using PyMC, a practical application, possible extensions and maybe a few PyMC tricks along the way. Outline What's wrong with current tennis ranking. Introduction to the Bayesian Bradley Terry model. Implementation of the model in PyMC. Application to ranking tennis players by latent ability score. Comparison with ATP ranking and ELO rating system. Possible extensions and other applications. Bio: Francesco Bruzzesi Data scientist at HelloFresh with a background in pure mathematics. Open source enthusiast and ML practitioner. === www.pydata.org PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R. PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome! 00:10 Help us add time stamps or captions to this video! See the description for details. Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Comments
  • Hadi Abdi Khojasteh - Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks 2 года назад
    Hadi Abdi Khojasteh - Distillation Unleashed: Domain Knowledge Transfer with Compact Neural Networks
    Опубликовано: 2 года назад
  • Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC 3 года назад
    Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC
    Опубликовано: 3 года назад
  • Benjamin Vincent - What-if- Causal reasoning meets Bayesian Inference | PyData Global 2022 2 года назад
    Benjamin Vincent - What-if- Causal reasoning meets Bayesian Inference | PyData Global 2022
    Опубликовано: 2 года назад
  • Design an AI-first Service Experience w/ Brett Weigl, Oracle Трансляция закончилась 12 часов назад
    Design an AI-first Service Experience w/ Brett Weigl, Oracle
    Опубликовано: Трансляция закончилась 12 часов назад
  • #125 Bayesian Sports Analytics & The Future of PyMC, with Chris Fonnesbeck 10 месяцев назад
    #125 Bayesian Sports Analytics & The Future of PyMC, with Chris Fonnesbeck
    Опубликовано: 10 месяцев назад
  • Extreme Hail Risk Estimation for Utility-scale Solar Parks Трансляция закончилась 3 недели назад
    Extreme Hail Risk Estimation for Utility-scale Solar Parks
    Опубликовано: Трансляция закончилась 3 недели назад
  • Developing Hierarchical Models for Sports Analytics with Chris Fonnesbeck 2 года назад
    Developing Hierarchical Models for Sports Analytics with Chris Fonnesbeck
    Опубликовано: 2 года назад
  • Aleksander Molak - A Practical Guide to Causality in Python (For The Perplexed) | PyData NYC 2023 2 года назад
    Aleksander Molak - A Practical Guide to Causality in Python (For The Perplexed) | PyData NYC 2023
    Опубликовано: 2 года назад
  • Fonnesbeck & Wiecki- Probabilistic Programming and Bayesian Computing with PyMC | PyData London 2024 1 год назад
    Fonnesbeck & Wiecki- Probabilistic Programming and Bayesian Computing with PyMC | PyData London 2024
    Опубликовано: 1 год назад
  • Чем PyMC отличается от других способов обучения байесовской модели? 3 года назад
    Чем PyMC отличается от других способов обучения байесовской модели?
    Опубликовано: 3 года назад
  • PyData Amsterdam 2023 - Opening Notes 2 года назад
    PyData Amsterdam 2023 - Opening Notes
    Опубликовано: 2 года назад
  • Dr. Thomas Wiecki: Bayesian Marketing Science - Solving Marketing's 3 Biggest Problems 2 года назад
    Dr. Thomas Wiecki: Bayesian Marketing Science - Solving Marketing's 3 Biggest Problems
    Опубликовано: 2 года назад
  • Probabilistic Programming and Bayesian Modeling with PyMC3 - Christopher Fonnesbeck 7 лет назад
    Probabilistic Programming and Bayesian Modeling with PyMC3 - Christopher Fonnesbeck
    Опубликовано: 7 лет назад
  • Hierarchical Time Series With Prophet and PyMC (Matthijs Brouns) 5 лет назад
    Hierarchical Time Series With Prophet and PyMC (Matthijs Brouns)
    Опубликовано: 5 лет назад
  • Цепи Маркова — математика предсказаний [Veritasium] 2 месяца назад
    Цепи Маркова — математика предсказаний [Veritasium]
    Опубликовано: 2 месяца назад
  • Воруй деньги РФ и беги 8 часов назад
    Воруй деньги РФ и беги
    Опубликовано: 8 часов назад
  • Full Python Tutorial: Bayesian Marketing Mix Modeling (MMM) SPECIAL GUEST: PyMC Labs 1 год назад
    Full Python Tutorial: Bayesian Marketing Mix Modeling (MMM) SPECIAL GUEST: PyMC Labs
    Опубликовано: 1 год назад
  • #108 Modeling Sports & Extracting Player Values, with Paul Sabin 1 год назад
    #108 Modeling Sports & Extracting Player Values, with Paul Sabin
    Опубликовано: 1 год назад
  • Where’s My Train: A PyMC Case Study | Allen B. Downey 1 год назад
    Where’s My Train: A PyMC Case Study | Allen B. Downey
    Опубликовано: 1 год назад
  • Математическая тревожность, нейросети, задачи тысячелетия / Андрей Коняев 1 месяц назад
    Математическая тревожность, нейросети, задачи тысячелетия / Андрей Коняев
    Опубликовано: 1 месяц назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5