У нас вы можете посмотреть бесплатно Der zentrale Grenzwertsatz von Lindeberg-Lévy или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Es sei X_1, X_2, ... eine Folge stochastisch unabhängiger und identisch verteilter Zufallsvariablen mit existierendem zweiten Moment und positiver Varianz. Der zentrale Grenzwertsatz von Lindeberg--Lévy besagt, dass in dieser Situation die Folge der Summen S_n = X_1+ ... + X_n nach Standardisierung beim Grenzübergang n gegen unendlich in Verteilung gegen eine standardnormalverteilte Zufallsvariable konvergiert. Das auf den ersten Blick Überraschende an diesem Grenzwertsatz ist, dass die Grenzverteilung nicht von der speziellen Gestalt der Verteilung von X_1 abhängt. Für diesen Satz gibt es viele verschiedene Beweise. In diesem Video wird ein Beweis vorgestellt, der den Stetigkeitssatz von Lévy-Cramér verwendet, siehe • Der Stetigkeitssatz von Lévy-Cramér Am Ende des Videos wird auch der Satz von Berry-Esseen vorgestellt, der eine Aussage über die Güte der Approximation der Verteilungsfunktion der standardisierten Zufallsvariablen S_n durch die Verteilungsfunktion der Standardnormalverteilung macht.