У нас вы можете посмотреть бесплатно [IROS 2024] Few-shot Transparent Instance Segmentation for Bin Picking или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
MERL Researcher Anoop Cherian presents his paper titled "Few-shot Transparent Instance Segmentation for Bin Picking" for the IEEE International Conference on Intelligent Robots and Systems, held October 14-18 2024 in Abu Dhabi, UAE. The paper was co-authored with MERL researchers Siddarth Jain and Tim K. Marks. Paper: https://www.merl.com/publications/doc... Abstract: In this paper, we consider the problem of segmenting multiple instances of a transparent object from RGB or gray scale camera images in a robotic bin-picking setting. Prior methods for solving this task are usually built on the Mask-RCNN framework, but they require large annotated datasets for fine-tuning. Instead, we consider the task in a few-shot setting and present TrInSeg, a data-efficient and robust instance segmentation method for transparent objects based on Mask-RCNN. Our key innovations in TrInSeg are twofold: i) a novel method, dubbed TransMixup, for producing new training images using synthetic transparent object instances created by spatially transforming annotated examples; and ii) a method for scoring the consistency between the predicted segments and affine transformations of an ideal object template. In our new scoring method, the spatial transformations are produced by an auxiliary neural network, and the scores are then used to filter inconsistent instance predictions. To demonstrate the effectiveness of our method, we present experiments on a new few-shot dataset consisting of seven categories of non-opaque (transparent and translucent) objects, each category varying in the size, shape, and degree of transparency of the objects. Our results show that TrInSeg achieves state-of-the-art performance, improving fine-tuned Mask-RCNN by more than 14% in mIoU, while requiring very few annotated training samples.