• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Neural Networks Explained from Scratch using Python скачать в хорошем качестве

Neural Networks Explained from Scratch using Python 4 years ago

neural networks from scratch python

neural networks fomr scratch python

neural networks form scratch python

neural networks

python

manim

animations

neural networks explained

machine learning explained

supervised learning

artificial intelligence

neural networks animated

open-source python

machine learning

neural network

neural network python

machine learning beginner

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Neural Networks Explained from Scratch using Python
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Neural Networks Explained from Scratch using Python в качестве 4k

У нас вы можете посмотреть бесплатно Neural Networks Explained from Scratch using Python или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Neural Networks Explained from Scratch using Python в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Neural Networks Explained from Scratch using Python

When I started learning Neural Networks from scratch a few years ago, I did not think about just looking at some Python code or similar. I found it quite hard to understand all the concepts behind Neural Networks (e.g. Bias, Backpropagation, ...). Now I know that it all looks quite more complicated when you see it written mathematically compared to looking at the code. In this video, I try to provide you an intuitive understanding through Python code and detailed animations. Hope it helps you :) Code: https://github.com/Bot-Academy/Neural... Find me on: Patreon:   / botacademy   Discord:   / discord   Twitter:   / bot_academy   Instagram:   / therealbotacademy   Citation: [1] https://www.datasciencecentral.com/m/... Additional Notes: 1. You might’ve seen that we haven’t used the variable e at all. This is for two reasons. First, normally we would’ve used it to calculate ‘delta_o’, but due to some tricks, it is not needed here. Second, it is sometimes helpful to print the average error during training to see if it decreases. 2. To see how it performs on images not seen during training, you could only use just the first 50000 images for training and then analyze the results on the remaining 10000 samples. I haven’t done it in this video for simplicity. The accuracy, however, shouldn’t change that much. 3. It seems like some people have a hard time understanding the shape lines [e.g. x.shape += (1,)]. So let me try to explain: To create a 1-tuple in python we need to write x=(1,). If we would just write x=(1), it gets converted to the integer 1 in Python. Numpy introduces the shape attribute for arrays. Because the shape of a matrix has to be represented by a tuple like (2, 5) or (2, 4, 7), it is a good idea to represent a vector as a 1-tuple instead of an integer for consistency. So it is (X,). If we want to use this vector in a matrix multiplication with a matrix, it doesn't work because you can't matrix multiply a vector with a matrix in numpy. So we need to add this 'invisible' second dimension of size 1. The line basically adds a (1,) vector to the shape of the (X,) vector which results in a matrix of size (X, 1). That's also why it doesn't work with (2,) because that would require more values. For example (5,) and (5, 1) both contain 5 values while (5, 2) would contain 10 values. I should've shown the shapes in the shape information box as (X,) instead of just X. I think that also made it more confusing. Credits: 17.08 - End ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Music: Ansia Orchestra - Hack The Planet Link:    • Ansia Orchestra - Hack The Planet [Epic/Ci...   Music provided by: MFY - No Copyright ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ The animations are created with a python library called manim. Manim was first created by Grant Sanderson also known as 3blue1brown (YouTube) and is now actively developed by the manim community. Special thanks to everyone involved in developing the library! Github: https://github.com/manimcommunity/manim Contact: [email protected] Chapters: 00:00 Basics 02:55 Bias 04:00 Dataset 05:25 One-Hot Label Encoding 06:57 Training Loops 08:15 Forward Propagation 10:22 Cost/Error Calculation 12:00 Backpropagation 15:30 Running the Neural Network 16:55 Where to find What 17:17 Outro

Comments
  • How to Create a Neural Network (and Train it to Identify Doodles) 2 years ago
    How to Create a Neural Network (and Train it to Identify Doodles)
    Опубликовано: 2 years ago
    2062447
  • Transformers, the tech behind LLMs | Deep Learning Chapter 5 1 year ago
    Transformers, the tech behind LLMs | Deep Learning Chapter 5
    Опубликовано: 1 year ago
    6701377
  • The Most Important Algorithm in Machine Learning 1 year ago
    The Most Important Algorithm in Machine Learning
    Опубликовано: 1 year ago
    743260
  • What is Recurrent Neural Network (RNN)? Deep Learning Tutorial 33 (Tensorflow, Keras & Python) 4 years ago
    What is Recurrent Neural Network (RNN)? Deep Learning Tutorial 33 (Tensorflow, Keras & Python)
    Опубликовано: 4 years ago
    392558
  • Bayes theorem, the geometry of changing beliefs 5 years ago
    Bayes theorem, the geometry of changing beliefs
    Опубликовано: 5 years ago
    5086664
  • But what is a neural network? | Deep learning chapter 1 7 years ago
    But what is a neural network? | Deep learning chapter 1
    Опубликовано: 7 years ago
    19783724
  • But what is a convolution? 2 years ago
    But what is a convolution?
    Опубликовано: 2 years ago
    3119145
  • Build Your First Pytorch Model In Minutes! [Tutorial + Code] 1 year ago
    Build Your First Pytorch Model In Minutes! [Tutorial + Code]
    Опубликовано: 1 year ago
    175181
  • Create a Basic Neural Network Model - Deep Learning with PyTorch 5 2 years ago
    Create a Basic Neural Network Model - Deep Learning with PyTorch 5
    Опубликовано: 2 years ago
    105043
  • Limits, L'Hôpital's rule, and epsilon delta definitions | Chapter 7, Essence of calculus 8 years ago
    Limits, L'Hôpital's rule, and epsilon delta definitions | Chapter 7, Essence of calculus
    Опубликовано: 8 years ago
    2290275

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5