У нас вы можете посмотреть бесплатно Jan Gerken - Emergent Equivariance in Deep Ensembles или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Abstract: We demonstrate that a generic deep ensemble is emergently equivariant under data augmentation in the large width limit. Specifically, the ensemble is equivariant at any training step, provided that data augmentation is used. Crucially, this equivariance also holds off-manifold and therefore goes beyond the intuition that data augmentation leads to approximately equivariant predictions. Furthermore, equivariance is emergent in the sense that predictions of individual ensemble members are not equivariant but their collective prediction is. Therefore, the deep ensemble is indistinguishable from a manifestly equivariant predictor. We prove this theoretically using neural tangent kernel theory and verify our theoretical insights using detailed numerical experiments. Based on joint work with Pan Kessel.