У нас вы можете посмотреть бесплатно Principal Component Analysis (PCA) Explained from scratch | Machine Learning from Zero | L.44 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Understand Principal Component Analysis (PCA) from scratch in this lecture. We explain how PCA performs dimensionality reduction, how principal components are derived using eigenvalues and eigenvectors, and how data is projected onto lower-dimensional subspaces while preserving maximum variance. You’ll learn the complete PCA workflow: data centering, covariance matrix, eigen decomposition, selecting principal components, and transforming data — all with clear intuition and visual explanations. This video is part of the Machine Learning From Zero series, designed for beginners as well as advanced learners who want strong conceptual clarity. 👉 Full playlist: • GATE DA - Machine Learning From Zero 📌 Prerequisites (Highly Recommended) Eigenvalues, Eigenvectors & Diagonalization | Linear Algebra Lec 09 • Eigenvalues, Eigenvectors & Diagonalizatio... Projection Vectors & Projection Matrix • Projection Vectors & Projection Matrix Exp... 📌 Topics Covered What is PCA and Why Dimensionality Reduction? Variance Maximization Principle Covariance Matrix Construction Eigenvalues & Eigenvectors in PCA Selecting Principal Components Projection onto Lower Dimensions Reconstruction Error Advantages & Limitations of PCA 🎯 Exam & Interview Relevance Highly useful for GATE DA, university exams, technical interviews, and Machine Learning foundations.