У нас вы можете посмотреть бесплатно Intrinsic Autoregressive Models in Stan | Rockefeller Foundation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Get the slides: https://www.datacouncil.ai/talks/intr... ABOUT THE TALK Conditional Autoregressive models, known as CAR, are a type of spatial models that measure local dependency of random variables. These models are widely used in disease mapping, urban planning and agriculture studies where data consists of an aggregated measure per areal unit. In this talk we will cover a subclass of CAR models (Intrinsic Autoregressive models, ICAR) and the workflow to implement it using Stan -- a probabilistic programming language. ABOUT THE SPEAKER Sue Marquez is a Manager Data Scientist currently working at The Rockefeller Foundation focusing on . She has previously worked as a data scientist at BuzzFeed and as a Statistical geneticist at Northwell Health in New York. She holds a graduate degree in Statistics from the University of Melbourne. ABOUT DATA COUNCIL: Data Council (https://www.datacouncil.ai/) is a community and conference series that provides data professionals with the learning and networking opportunities they need to grow their careers. Make sure to subscribe to our channel for more videos, including DC_THURS, our series of live online interviews with leading data professionals from top open source projects and startups. FOLLOW DATA COUNCIL: Twitter: / datacouncilai LinkedIn: / datacouncil-ai Facebook: / datacouncilai Eventbrite: https://www.eventbrite.com/o/data-cou...