У нас вы можете посмотреть бесплатно PERFORMANCE METRICS of a DEEP LEARNING MODEL | или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#DeepLearningMetrics #PerformanceMetrics #MachineLearning #ModelEvaluation #DeepLearning #ArtificialIntelligence #NeuralNetworks #DataScience #PythonProgramming #CodingWithBharath #ConfusionMatrix #F1Score #PrecisionRecall #AUC #ClassificationMetrics #AI #MLTutorial #ScikitLearn #TensorFlow Stop guessing if your Deep Learning model is actually good! 🤔 In this essential guide, you'll master the Performance Metrics you must know, like Precision, Recall, F1-Score, and AUC to evaluate, compare, and deploy a winning Neural Network. Get the code and full explanation now! Video Summary & Deep Dive Welcome back to #CodingWithBharath! Today, we're diving deep into the most critical part of the Machine Learning lifecycle: Model Evaluation. A model that trains well but performs poorly in the real world is useless. In this tutorial, you will learn to: Understand the difference between Classification Metrics (like Accuracy and Confusion Matrix) and Regression Metrics (like MSE and R-squared). Correctly interpret the F1-Score and choose the right metric for Imbalanced Datasets (e.g., in fraud detection or medical diagnosis). Implement and calculate key metrics in Python using libraries like scikit-learn and TensorFlow/PyTorch. Evaluate your Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) for real-world Deep Learning applications. Whether you're a beginner learning AI or a pro looking for a refresh, this is the ultimate guide to ensure your Artificial Intelligence models are robust and reliable.