У нас вы можете посмотреть бесплатно Interview: How LinkedIn Built AI Job Search Using Large Language Models (LLMs) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this episode, I talk with Rohan Rajiv, former Product Lead for LinkedIn’s Job Search and Jobs Marketplace, about how LinkedIn uses large language models (LLMs) to power job discovery and hiring at massive scale. We unpack how LinkedIn moved from traditional keyword (“lexical”) search to semantic matching — and why that shift fundamentally changed job search quality. Rohan explains: • How LinkedIn’s Job Search actually works • How the employer-side Jobs Marketplace reaches candidates • Why relevance is so hard with unstructured job data • How LLMs enabled natural-language job queries • What an “LLM judge” is — and how it evaluates search quality at scale • How product policy and evaluation loops improve AI systems • The real bottlenecks: policy design, judge quality, infra scaling, GPU cost, and latency • How auctions interact with AI ranking in a two-sided marketplace We also discuss career skills for AI product builders, why coding fundamentals still matter in the AI era, and Rohan’s 15+ year daily writing practice at ALearningADay.blog. If you’re building AI products — or curious how LinkedIn’s job search really works under the hood — this is a rare look at LLM systems operating in production at massive scale. 00:00 Introducing Rohan 00:46 What LinkedIn Job Search Does 01:58 The PM Role at LinkedIn 03:31 Listening to User Feedback 04:48 Job Seeker Pain Points 06:44 Why Search Is Hard 09:03 How LLMs Changed Search 12:27 The LLM “Judge” 15:16 How the Judge Works 21:40 Writing Product Policy 24:41 What Policy Really Is 24:52 Query Rules & Attributes 25:16 Measuring Search Quality 26:18 The Evaluation Loop 27:19 Testing & A/B Experiments 29:07 Biggest Bottlenecks 30:41 Scaling Globally 32:26 Search vs Marketplace 36:39 AI Product Career Skills 41:12 Should You Still Learn to Code? 42:32 Daily Writing & Compounding 44:33 Lightning Round ________________________ 𝗖𝗼𝗻𝘁𝗮𝗰𝘁 𝗠𝗲 • LinkedIn: / brandonkrakowsky • Wharton AI & Analytics Initiative: https://ai-analytics.wharton.upenn.edu 𝗣𝗼𝗱𝗰𝗮𝘀𝘁 𝗟𝗶𝗻𝗸𝘀 • Interviews: • Learn the Technology: Interviews • How To Videos: • Learn the Technology: How To Videos • Spotify: https://bit.ly/47JxADO 𝗙𝗼𝗹𝗹𝗼𝘄 𝗠𝗲 • Instagram: / learnthetechnologywithbk • TikTok: / learnthetechnologywithbk • X (Twitter): https://x.com/LearnTechWBK • GitHub: https://github.com/learnthetechnology... 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝗿𝗮 • Intro to Programming with Python and Java: https://www.coursera.org/specializati... • How to Use Data: https://www.coursera.org/specializati...