У нас вы можете посмотреть бесплатно AI Agent Lands Lunar on the Moon! | Deep Q-Learning | PyTorch | Reinforcement Learning | Gymnasium или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Useful Videos - Local Network vs Target Network - • Local Network vs Target Network in Deep Q ... Exploration-Exploitation Tradeoff - • Exploration-Exploitation Tradeoff Explaine... Replay Memory - • Replay Memory: The Secret Sauce of Deep Q-... Artificial Neural Networks (ANN) - • Artificial Neural Networks (ANN) + PyTorch... Complete Code - https://github.com/SumitJainUTD/AI-pr... Gymnasium - https://gymnasium.farama.org/environm... "Witness the incredible journey of an AI agent mastering the art of lunar landing! In this video, we'll dive deep into the world of reinforcement learning, using PyTorch and Deep Q-Learning to train an intelligent agent to successfully navigate the Lunar Lander environment within Gymnasium. We'll break down the code, explain the concepts, and show you how to build your own lunar landing AI. Whether you're a seasoned machine learning enthusiast or just starting your AI journey, this tutorial will guide you through the process step-by-step. Learn how to: Implement Deep Q-Learning (DQN) in PyTorch. Utilize the Gymnasium environment for reinforcement learning. Train an AI agent to land a lunar lander. Understand the fundamentals of reinforcement learning. Don't forget to like, subscribe, and hit the notification bell for more exciting AI projects! #AI, #ReinforcementLearning, #DeepQLearning, #PyTorch, #Gymnasium, #MachineLearning, #ArtificialIntelligence, #Python, #Coding, #LunarLander, #AIAgent, #DeepLearning, #AIProject, #RL #dqn