У нас вы можете посмотреть бесплатно How to create Great Epxectations suite? Quality Checks for Data Pipelines | Data Quality или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video we are going to cover how to create a Great Expecations suite for Data Quality testing. Previously we have created a custom suite as a json file. The Expectation library has built-in functions to carry out the data quality tests. With Great Expectations, you can assert what you expect from the data you load and transform, and catch data issues quickly – Expectations are basically unit tests for your data. Great Expectations also creates data documentation and data quality reports from those Expectations. Link to GitHub repo: https://github.com/hnawaz007/pythonda... Link to previous Great Expecations vidoe : • How to test your Data Pipelines with Great... Link to Data Quality playlist: • How to test your Python ETL pipelines | Da... Link to Great Expectations Docs: https://docs.greatexpectations.io/docs/ Link to functions glossary: https://great-expectations.readthedoc... #dataquality #Python #greatexpectations 💥Subscribe to our channel: / haqnawaz 📌 Links ----------------------------------------- #️⃣ Follow me on social media! #️⃣ 🔗 GitHub: https://github.com/hnawaz007 📸 Instagram: / bi_insights_inc 📝 LinkedIn: / haq-nawaz 🔗 / hnawaz100 ----------------------------------------- Topics in this video (click to jump around): ================================== 0:00 Introduction Great Expectations 0:38 Notebook & Data Import 1:01 Install and configure Great Expectations 2:10 Create connection to data source 3:45 Create Great Expectations suite 4:37 Define & Run Data QualityTests 7:09 Automated Documentation 8:12 Edit & Update suite