У нас вы можете посмотреть бесплатно CI Symposium 2025: A Novel Physics-Informed ML Method for 3D Solar Photosphere Reconstruction или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Presentation Slides: https://koacloud.its.hawaii.edu/s/bTQ... Speaker: Dr. Kai Yang Postdoctoral Researcher, Institute for Astronomy, University of Hawaiʻi at Mānoa Abstract: Inferring the three-dimensional (3D) solar atmospheric structures from observations is a critical task for advancing our understanding of the magnetic fields and electric currents that drive solar activity. In this work, we introduce a novel, Physics-Informed Machine Learning method to reconstruct the 3D structure of the lower solar atmosphere based on the output of optical depth sampled spectropolarimetric inversions, wherein both the fully disambiguated vector magnetic fields and the geometric height associated with each optical depth are returned simultaneously. Traditional techniques typically resolve the 180-degree azimuthal ambiguity assuming a single layer, either ignoring the intrinsic non-planar physical geometry of constant optical-depth surfaces (e.g., the Wilson depression in sunspots), or correcting the effect as a post-processing step. In contrast, our approach simultaneously maps the optical depths to physical heights, and enforces the divergence-free condition for magnetic fields fully in 3D. Tests on magnetohydrodynamic simulations of quiet Sun, plage, and a sunspot demonstrate that our method reliably recovers the horizontal magnetic field orientation in locations with appreciable magnetic field strength. By coupling the resolutions of the azimuthal ambiguity and the geometric heights problems, we achieve a self-consistent reconstruction of the 3D vector magnetic fields and, by extension, the electric current density and Lorentz force. This physics-constrained, label-free training paradigm is a generalizable, physics-anchored framework that extends across solar magnetic environments while improving the understanding of various solar puzzles. Bio: Dr. Kai Yang, Postdoctoral Researcher, Institute for Astronomy, University of Hawaiʻi at Mānoa -Research Scientist, SETI Institute, 2025 September— present. -Postdoc, The University of Hawaii, Institute for Astronomy, 2022-2025, Sep -Postdoc, The University of Sydney, Sydney Institute for Astronomy, 2019–2022 -PhD, Nanjing University, School of Astronomy and Space Science, 2018.