• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Barrier Option Pricing with Binomial Trees || Theory & Implementation in Python скачать в хорошем качестве

Barrier Option Pricing with Binomial Trees || Theory & Implementation in Python 3 years ago

binomial option pricing model

option pricing

option pricing model

risk-neutral probability

risk neutral probability option pricing

option pricing explained

option pricing python

binomial model and black scholes model

options

risk-neutral valuation

valuation of options

barrier options

barrier options explained

barrier option pricing

python for finance

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Barrier Option Pricing with Binomial Trees || Theory & Implementation in Python
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Barrier Option Pricing with Binomial Trees || Theory & Implementation in Python в качестве 4k

У нас вы можете посмотреть бесплатно Barrier Option Pricing with Binomial Trees || Theory & Implementation in Python или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Barrier Option Pricing with Binomial Trees || Theory & Implementation in Python в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Barrier Option Pricing with Binomial Trees || Theory & Implementation in Python

In this video we look at pricing Barrier Options using the Binomial Asset Pricing Model and show how you can implement the barrier tree model to price an up-and-out barrier option in Python. There are two types of barrier options which we look at in this tutorial, up-and-out barrier options and down-and-out barrier options. Here we go through the theory and implementation. For those who just want to code, please skip ahead to the Python Implementation section. I will take you through two implementations of a simple barrier tree model in Python, one that will use ‘for loops’ to step through each node at each time step (a function I have defined as binomial tree slow), and the other (binomial tree fast) will vectorize these steps using numpy arrays, improving overall computation time as N time steps increase. Although not necessary for the example today, using numpy arrays and vectorizing our calculations will improve computations as we delve deeper into financial mathematics and implementation heading forward. In this tutorial series we will be breaking down the theory described and published in Steven Shreve’s book’s Stochastic Calculus for Finance I & II. As a guide for implementing these concepts in Python, we will refer to the numerical methods and practices outlined in Les Clewlow & Chris Strickland’s book Implementing Derivatives Models. For any observant viewers, I calculated the variable 'disc' incorrectly in this video. I used up factor 'u' in the numerator instead of the correct value with is the down factor 'd'. Also, in the slow tree only during backward recursion the stock price should be calculated as S = S0 * u**j * d**(i-j) instead of S = S0 * u**j * d**(N-j). Code is correct on my website (link above). 00:00 Intro 00:17 Theory || What are Barrier Options? 02:25 Theory || European vs Barrier Option Payoff 04:42 Theory || Multi-period Binomial Model with Barrier Value H 08:08 Python Implementation || Barrier Tree Slow 18:50 Python Implementation || Barrier Tree Fast 25:26 Python Implementation || Comparing the Slow vs Fast Implementation ★ ★ Code Available on GitHub ★ ★ GitHub: https://github.com/TheQuantPy Specific Tutorial Link: https://github.com/TheQuantPy/youtube... ★ ★ QuantPy GitHub ★ ★ Collection of resources used on QuantPy YouTube channel. https://github.com/thequantpy ★ ★ Discord Community ★ ★ Join a small niche community of like-minded quants on discord.   / discord   ★ ★ Support our Patreon Community ★ ★ Get access to Jupyter Notebooks that can run in the browser without downloading python.   / quantpy   ★ ★ ThetaData API ★ ★ ThetaData's API provides both realtime and historical options data for end-of-day, and intraday trades and quotes. Use coupon 'QPY1' to receive 20% off on your first month. https://www.thetadata.net/ ★ ★ Online Quant Tutorials ★ ★ WEBSITE: https://quantpy.com.au ★ ★ Contact Us ★ ★ EMAIL: [email protected] Disclaimer: All ideas, opinions, recommendations and/or forecasts, expressed or implied in this content, are for informational and educational purposes only and should not be construed as financial product advice or an inducement or instruction to invest, trade, and/or speculate in the markets. Any action or refraining from action; investments, trades, and/or speculations made in light of the ideas, opinions, and/or forecasts, expressed or implied in this content, are committed at your own risk an consequence, financial or otherwise. As an affiliate of ThetaData, QuantPy Pty Ltd is compensated for any purchases made through the link provided in this description.

Comments
  • American Option Pricing with Binomial Trees || Theory & Implementation in Python 3 years ago
    American Option Pricing with Binomial Trees || Theory & Implementation in Python
    Опубликовано: 3 years ago
    15499
  • Python for Finance: Are stock returns normally distributed? 4 years ago
    Python for Finance: Are stock returns normally distributed?
    Опубликовано: 4 years ago
    16774
  • Monte Carlo Variance Reduction with Control Variates | Option Pricing Accuracy 3 years ago
    Monte Carlo Variance Reduction with Control Variates | Option Pricing Accuracy
    Опубликовано: 3 years ago
    9018
  • An introduction to Policy Gradient methods - Deep Reinforcement Learning 6 years ago
    An introduction to Policy Gradient methods - Deep Reinforcement Learning
    Опубликовано: 6 years ago
    230253
  • Южная Америка: от мусорных джунглей до карнавала и космических ракет | Нищета, культура, космодром 1 day ago
    Южная Америка: от мусорных джунглей до карнавала и космических ракет | Нищета, культура, космодром
    Опубликовано: 1 day ago
    237626
  • Binomial Option Pricing Model || Theory & Implementation in Python 3 years ago
    Binomial Option Pricing Model || Theory & Implementation in Python
    Опубликовано: 3 years ago
    33372
  • Historical Value at Risk (VaR) with Python 4 years ago
    Historical Value at Risk (VaR) with Python
    Опубликовано: 4 years ago
    21221
  • Create a Basic Neural Network Model - Deep Learning with PyTorch 5 1 year ago
    Create a Basic Neural Network Model - Deep Learning with PyTorch 5
    Опубликовано: 1 year ago
    98175
  • Алексей Венедиктов о переговорах в Стамбуле, приятелях во власти, хейте от эмигрантов и новой жизни 12 hours ago
    Алексей Венедиктов о переговорах в Стамбуле, приятелях во власти, хейте от эмигрантов и новой жизни
    Опубликовано: 12 hours ago
    295203
  • What Linear Algebra Is — Topic 1 of Machine Learning Foundations 4 years ago
    What Linear Algebra Is — Topic 1 of Machine Learning Foundations
    Опубликовано: 4 years ago
    164450

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS