У нас вы можете посмотреть бесплатно Python Programming Lecture Series- Part 18 (Logistic Regression as a Binary Classifier) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Welcome to Part 18 of our Python Programming Series! In this video, we delve into the fascinating world of Logistic Regression and its essential role as a binary classifier. I am using Google Colab for our demo session, making it accessible and easy for everyone to follow along. In this episode, I'll guide you through the process of creating a Logistic Regression model and training it using the powerful scikit-learn library. To make things hands-on and practical, I have generated a small binary classification dataset with 100 samples using numpy functions. But that's not all! I will also address a critical question: Why can't we use linear regression for binary classification? Understanding this fundamental concept is crucial, and I will provide a clear explanation to ensure you grasp the key differences between these two techniques. If you're new to Logistic Regression or need a refresher, don't worry! I kindly request you to check out Part 17 of our series, where I introduced Logistic Regression and discussed the essential Sigmoid function in detail. It's the perfect prelude to this informative session. Whether you're a beginner or an experienced Python programmer, this video has something valuable for you.