• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

[CMU VASC Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges скачать в хорошем качестве

[CMU VASC Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges 1 год назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
[CMU VASC Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: [CMU VASC Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges в качестве 4k

У нас вы можете посмотреть бесплатно [CMU VASC Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон [CMU VASC Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



[CMU VASC Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges

Abstract: Foundation models, such as GPT-4 Vision, have marked significant achievements in the fields of natural language and vision, demonstrating exceptional abilities to adapt to new tasks and scenarios. However, physical interaction—such as cooking, cleaning, or caregiving—remains a frontier where foundation models and robotic systems have yet to achieve the desired level of adaptability and generalization. In this talk, I will discuss the opportunities for incorporating foundation models into classic robotic pipelines to endow robots with capabilities beyond those achievable with traditional robotic tools. The talk will focus on three key improvements in (1) task specification, (2) low-level, and (3) high-level scene modeling. The core idea behind this series of research is to introduce novel representations and integrate structural priors into robot learning systems, incorporating the commonsense knowledge learned from foundation models to achieve the best of both worlds. I will demonstrate how such integration allows robots to interpret instructions given in free-form natural language and perform few- or zero-shot generalizations for challenging manipulation tasks. Additionally, we will explore how foundation models can enable category-level generalization for free and how this can be augmented with an action-conditioned scene graph for a wide range of real-world manipulation tasks involving rigid, articulated, and nested objects (e.g., Matryoshka dolls), and deformable objects. Towards the end of the talk, I will discuss challenges that still lie ahead and potential avenues to address these challenges. Bio: Yunzhu Li is an Assistant Professor of Computer Science at the University of Illinois Urbana-Champaign (UIUC). Before joining UIUC, he collaborated with Fei-Fei Li and Jiajun Wu during his Postdoc at Stanford. Yunzhu earned his PhD from MIT under the guidance of Antonio Torralba and Russ Tedrake. His work stands at the intersection of robotics, computer vision, and machine learning, with the goal of helping robots perceive and interact with the physical world as dexterously and effectively as humans do. Yunzhu’s work has been recognized through the Best Systems Paper Award and the Finalist for Best Paper Award at the Conference on Robot Learning (CoRL). Yunzhu is also the recipient of the Adobe Research Fellowship and was selected as the First Place Recipient of the Ernst A. Guillemin Master’s Thesis Award in Artificial Intelligence and Decision Making at MIT. His research has been published in top journals and conferences, including Nature, NeurIPS, CVPR, and RSS, and featured by major media outlets, including CNN, BBC, The Wall Street Journal, Forbes, The Economist, and MIT Technology Review. Homepage: https://yunzhuli.github.io/

Comments
  • [NUS Robotics Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges 7 месяцев назад
    [NUS Robotics Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges
    Опубликовано: 7 месяцев назад
  • [AAAI-25 Tutorial] Robotic Foundation Models & Remaining Challenges 9 месяцев назад
    [AAAI-25 Tutorial] Robotic Foundation Models & Remaining Challenges
    Опубликовано: 9 месяцев назад
  • RI Seminar: Yuke Zhu : Toward Generalist Humanoid Robots 1 месяц назад
    RI Seminar: Yuke Zhu : Toward Generalist Humanoid Robots
    Опубликовано: 1 месяц назад
  • Chelsea Finn: Building Robots That Can Do Anything 4 месяца назад
    Chelsea Finn: Building Robots That Can Do Anything
    Опубликовано: 4 месяца назад
  • [ICLR-21 simDL] [Invited Talk] Compositional Dynamics Modeling for Physical Inference and Control 4 года назад
    [ICLR-21 simDL] [Invited Talk] Compositional Dynamics Modeling for Physical Inference and Control
    Опубликовано: 4 года назад
  • Stanford Seminar - Multitask Transfer in TRI’s Large Behavior Models for Dexterous Manipulation 6 месяцев назад
    Stanford Seminar - Multitask Transfer in TRI’s Large Behavior Models for Dexterous Manipulation
    Опубликовано: 6 месяцев назад
  • [EEML'24] Jovana Mitrović - Vision Language Models 1 год назад
    [EEML'24] Jovana Mitrović - Vision Language Models
    Опубликовано: 1 год назад
  • Робототехника: почему сейчас? — Куан Вуонг и Йост Тобиас Спрингберг, Физический интеллект 4 месяца назад
    Робототехника: почему сейчас? — Куан Вуонг и Йост Тобиас Спрингберг, Физический интеллект
    Опубликовано: 4 месяца назад
  • π0: A Foundation Model for Robotics with Sergey Levine - 719 9 месяцев назад
    π0: A Foundation Model for Robotics with Sergey Levine - 719
    Опубликовано: 9 месяцев назад
  • MIT Robotics - Russ Tedrake - Planning with Graphs of Convex Sets (in the age of foundation models) 1 год назад
    MIT Robotics - Russ Tedrake - Planning with Graphs of Convex Sets (in the age of foundation models)
    Опубликовано: 1 год назад
  • AI, Machine Learning, Deep Learning and Generative AI Explained 1 год назад
    AI, Machine Learning, Deep Learning and Generative AI Explained
    Опубликовано: 1 год назад
  • U of T Robotics Institute Seminar: Sergey Levine (UC Berkeley) 8 месяцев назад
    U of T Robotics Institute Seminar: Sergey Levine (UC Berkeley)
    Опубликовано: 8 месяцев назад
  • Princeton Robotics - Russ Tedrake - Dexterous Manipulation with Diffusion Policies 2 года назад
    Princeton Robotics - Russ Tedrake - Dexterous Manipulation with Diffusion Policies
    Опубликовано: 2 года назад
  • CoRL 2024 MRM-D Workshop: Ted Xiao - What's Missing for Robotics Foundation Models? 1 год назад
    CoRL 2024 MRM-D Workshop: Ted Xiao - What's Missing for Robotics Foundation Models?
    Опубликовано: 1 год назад
  • Robot Learning 2025: Foundational Models for Robotics and Scaling DeepRL 10 месяцев назад
    Robot Learning 2025: Foundational Models for Robotics and Scaling DeepRL
    Опубликовано: 10 месяцев назад
  • EI Seminar - Siyuan Feng & Ben Burchfiel - Towards Large Behavior Models Трансляция закончилась 2 года назад
    EI Seminar - Siyuan Feng & Ben Burchfiel - Towards Large Behavior Models
    Опубликовано: Трансляция закончилась 2 года назад
  • MIT Robotics - Matthew Mason - Models of Robotic Manipulation 6 лет назад
    MIT Robotics - Matthew Mason - Models of Robotic Manipulation
    Опубликовано: 6 лет назад
  • [CMU 16-831][Guest Lecture] Learning Structured World Models From and For Physical Interactions 1 год назад
    [CMU 16-831][Guest Lecture] Learning Structured World Models From and For Physical Interactions
    Опубликовано: 1 год назад
  • OpenVLA: LeRobot Research Presentation #5 by Moo Jin Kim 1 год назад
    OpenVLA: LeRobot Research Presentation #5 by Moo Jin Kim
    Опубликовано: 1 год назад
  • MIT Robotics - Dieter Fox - Toward Foundational Robot Manipulation Skills 2 года назад
    MIT Robotics - Dieter Fox - Toward Foundational Robot Manipulation Skills
    Опубликовано: 2 года назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5