• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

[NUS Robotics Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges скачать в хорошем качестве

[NUS Robotics Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges 7 месяцев назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
[NUS Robotics Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: [NUS Robotics Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges в качестве 4k

У нас вы можете посмотреть бесплатно [NUS Robotics Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон [NUS Robotics Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



[NUS Robotics Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges

Abstract: Foundation models, such as GPT, have marked significant achievements in the fields of natural language and vision, demonstrating exceptional abilities to adapt to new tasks and scenarios. However, physical interaction—such as cooking, cleaning, or caregiving—remains a frontier where foundation models and robotic systems have yet to achieve the desired level of adaptability and generalization. In this talk, I will discuss the opportunities for incorporating foundation models into classic robotic pipelines to endow robots with capabilities beyond those achievable with traditional robotic tools. The talk will focus on three key improvements in (1) task specification, (2) low-level, and (3) high-level scene modeling. The central idea behind this research is to translate the commonsense knowledge embedded in foundation models into structural priors that can be integrated into robot learning systems. This approach leverages the strengths of different modules (e.g., VLM for task interpretation and constrained optimization for motion planning), achieving the best of both worlds. I will demonstrate how such integration enables robots to interpret instructions provided in free-form natural language, and how foundation models can be augmented with additional memory mechanisms, such as an action-conditioned scene graph, to handle a wide range of real-world manipulation tasks. Toward the end of the talk, I will discuss the limitations of the current foundation models, challenges that still lie ahead, and potential avenues to address these challenges. Bio: Yunzhu Li is an Assistant Professor of Computer Science at Columbia University. Before joining Columbia, he was an Assistant Professor at UIUC CS and spent time as a Postdoc at Stanford, collaborating with Fei-Fei Li and Jiajun Wu. Yunzhu earned his PhD from MIT under the guidance of Antonio Torralba and Russ Tedrake. Yunzhu’s work has been recognized with the Best Paper Award at ICRA, the Best Systems Paper Award, and as a Finalist for the Best Paper Award at CoRL. Yunzhu is also the recipient of the AAAI New Faculty Highlights, the Sony Faculty Innovation Award, the Amazon Research Award, the Adobe Research Fellowship, and was selected as the First Place Recipient of the Ernst A. Guillemin Master’s Thesis Award in AI and Decision Making at MIT. His research has been published in top journals and conferences, including Nature and Science, and featured by major media outlets such as CNN, BBC, and The Wall Street Journal. Homepage: https://yunzhuli.github.io/

Comments
  • Модели ловкого роботизированного фундамента 1 месяц назад
    Модели ловкого роботизированного фундамента
    Опубликовано: 1 месяц назад
  • Waymo's EMMA: Teaching Cars to Think - Jyh Jing Hwang, Waymo 4 месяца назад
    Waymo's EMMA: Teaching Cars to Think - Jyh Jing Hwang, Waymo
    Опубликовано: 4 месяца назад
  • RI Seminar: Yuke Zhu : Toward Generalist Humanoid Robots 1 месяц назад
    RI Seminar: Yuke Zhu : Toward Generalist Humanoid Robots
    Опубликовано: 1 месяц назад
  • CoRL 2024 MRM-D Workshop: Ted Xiao - What's Missing for Robotics Foundation Models? 1 год назад
    CoRL 2024 MRM-D Workshop: Ted Xiao - What's Missing for Robotics Foundation Models?
    Опубликовано: 1 год назад
  • Simulation and Generalization in VLA Models for Robotic Manipulation 9 месяцев назад
    Simulation and Generalization in VLA Models for Robotic Manipulation
    Опубликовано: 9 месяцев назад
  • [CMU VASC Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges 1 год назад
    [CMU VASC Seminar] Foundation Models for Robotic Manipulation: Opportunities and Challenges
    Опубликовано: 1 год назад
  • Actuate 2024 | Sergey Levine | Robotic Foundation Models 1 год назад
    Actuate 2024 | Sergey Levine | Robotic Foundation Models
    Опубликовано: 1 год назад
  • Stanford Seminar - Generalization through Task Representations with Foundation Models 5 месяцев назад
    Stanford Seminar - Generalization through Task Representations with Foundation Models
    Опубликовано: 5 месяцев назад
  • DDPS | Defining Foundation Models for Computational Science: Toward Clarity and Rigor 1 месяц назад
    DDPS | Defining Foundation Models for Computational Science: Toward Clarity and Rigor
    Опубликовано: 1 месяц назад
  • ORCA: An Open-Source, Reliable, Cost-Effective, Anthropomorphic Robotic Hand for Dexterous Learning 1 месяц назад
    ORCA: An Open-Source, Reliable, Cost-Effective, Anthropomorphic Robotic Hand for Dexterous Learning
    Опубликовано: 1 месяц назад
  • Fully autonomous robots are much closer than you think – Sergey Levine 3 месяца назад
    Fully autonomous robots are much closer than you think – Sergey Levine
    Опубликовано: 3 месяца назад
  • MIT Robotics - Zac Manchester - Composable Optimization for Robotic Motion Planning and Control 8 месяцев назад
    MIT Robotics - Zac Manchester - Composable Optimization for Robotic Motion Planning and Control
    Опубликовано: 8 месяцев назад
  • [AAAI-25 Tutorial] Robotic Foundation Models & Remaining Challenges 8 месяцев назад
    [AAAI-25 Tutorial] Robotic Foundation Models & Remaining Challenges
    Опубликовано: 8 месяцев назад
  • U of T Robotics Institute Seminar: Sergey Levine (UC Berkeley) 8 месяцев назад
    U of T Robotics Institute Seminar: Sergey Levine (UC Berkeley)
    Опубликовано: 8 месяцев назад
  • Робототехника: почему сейчас? — Куан Вуонг и Йост Тобиас Спрингберг, Физический интеллект 4 месяца назад
    Робототехника: почему сейчас? — Куан Вуонг и Йост Тобиас Спрингберг, Физический интеллект
    Опубликовано: 4 месяца назад
  • MIT Robotics - Andrew Davison - From SLAM to Spatial AI 6 месяцев назад
    MIT Robotics - Andrew Davison - From SLAM to Spatial AI
    Опубликовано: 6 месяцев назад
  • Autonomy Talks - Marco Pavone: Foundation Models for Autonomous Driving 8 месяцев назад
    Autonomy Talks - Marco Pavone: Foundation Models for Autonomous Driving
    Опубликовано: 8 месяцев назад
  • Chelsea Finn: Building Robots That Can Do Anything 4 месяца назад
    Chelsea Finn: Building Robots That Can Do Anything
    Опубликовано: 4 месяца назад
  • Robot Learning 2025: Foundational Models for Robotics and Scaling DeepRL 10 месяцев назад
    Robot Learning 2025: Foundational Models for Robotics and Scaling DeepRL
    Опубликовано: 10 месяцев назад
  • Stanford Seminar - Where are the Field Robots? 11 месяцев назад
    Stanford Seminar - Where are the Field Robots?
    Опубликовано: 11 месяцев назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5