• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Graph Neural Networks for Binding Affinity Prediction скачать в хорошем качестве

Graph Neural Networks for Binding Affinity Prediction 4 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Graph Neural Networks for Binding Affinity Prediction
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Graph Neural Networks for Binding Affinity Prediction в качестве 4k

У нас вы можете посмотреть бесплатно Graph Neural Networks for Binding Affinity Prediction или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Graph Neural Networks for Binding Affinity Prediction в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Graph Neural Networks for Binding Affinity Prediction

The topic relates to the applications of AI and bioinformatics during the early stages of drug discovery. Bio-/cheminformatics is now on the edge of a similar paradigm shift as computer vision before the deep learning model AlexNet won the 2012 ImageNet contest. Instead of selecting manually crafted features for molecules, integrative features are learned by optimization methods. Challenges: Predicting drug-target interactions is crucial for novel drug discovery, drug repurposing, and uncovering off-target effects. Experimental bioactivity screening takes significant time (1–3 years) and expense (more than 100 million USD on average per new drug-on-market) but has low efficiency. Bioassays are typically backed by computational methods, but legacy simulations fail to deliver either sufficient precision — like in the example of AutoDock Vina with modern RF Score which failed to separate active and inactive thrombin ligands — or sufficient speed — like in the example of molecular dynamics or first-principle quantum mechanics simulations. As a result, more than 90% of the proposed leads are declined (He et al., 2017). Solution: In silico methods are highly demanded since they can expedite the drug development process by systemically suggesting a new set of candidate molecules promptly, which saves time and reduces the cost of the whole process by up to 43% (DiMasi et al., 2016). Graph neural networks deliver superior accuracy for the task in a matter of milliseconds per receptor-ligand pair and extend docking capabilities by accepting structures without coordinates. More information in the related Medium post:   / graph-neural-networks-for-binding-affinity...  

Comments
  • Но что такое нейронная сеть? | Глава 1. Глубокое обучение 8 лет назад
    Но что такое нейронная сеть? | Глава 1. Глубокое обучение
    Опубликовано: 8 лет назад
  • Discovering New Molecules Using Graph Neural Networks by Rocío Mercado 4 года назад
    Discovering New Molecules Using Graph Neural Networks by Rocío Mercado
    Опубликовано: 4 года назад
  • What If You Keep Slowing Down? 7 дней назад
    What If You Keep Slowing Down?
    Опубликовано: 7 дней назад
  • Гипотеза Пуанкаре — Алексей Савватеев на ПостНауке 5 лет назад
    Гипотеза Пуанкаре — Алексей Савватеев на ПостНауке
    Опубликовано: 5 лет назад
  • An Introduction to Graph Neural Networks: Models and Applications 5 лет назад
    An Introduction to Graph Neural Networks: Models and Applications
    Опубликовано: 5 лет назад
  • Как LLM могут хранить факты | Глава 7, Глубокое обучение 1 год назад
    Как LLM могут хранить факты | Глава 7, Глубокое обучение
    Опубликовано: 1 год назад
  • Удивительный процесс изготовления пуль для боеприпасов на местном заводе. 1 месяц назад
    Удивительный процесс изготовления пуль для боеприпасов на местном заводе.
    Опубликовано: 1 месяц назад
  • Пайтон для начинающих - Изучите Пайтон за 1 час 5 лет назад
    Пайтон для начинающих - Изучите Пайтон за 1 час
    Опубликовано: 5 лет назад
  • Machine learning in drug discovery: what can go wrong? — Vikram Sundar 6 лет назад
    Machine learning in drug discovery: what can go wrong? — Vikram Sundar
    Опубликовано: 6 лет назад
  • Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение 8 лет назад
    Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение
    Опубликовано: 8 лет назад
  • Как создаются степени магистра права? 2 месяца назад
    Как создаются степени магистра права?
    Опубликовано: 2 месяца назад
  • Теорема Байеса, геометрия изменения убеждений 6 лет назад
    Теорема Байеса, геометрия изменения убеждений
    Опубликовано: 6 лет назад
  • Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747? 2 месяца назад
    Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?
    Опубликовано: 2 месяца назад
  • Intro to graph neural networks (ML Tech Talks) 4 года назад
    Intro to graph neural networks (ML Tech Talks)
    Опубликовано: 4 года назад
  • Графовые сверточные сети (GCN): с точки зрения CNN 2 года назад
    Графовые сверточные сети (GCN): с точки зрения CNN
    Опубликовано: 2 года назад
  • Что происходит с нейросетью во время обучения? 8 лет назад
    Что происходит с нейросетью во время обучения?
    Опубликовано: 8 лет назад
  • Research talk: AI for drug discovery 3 года назад
    Research talk: AI for drug discovery
    Опубликовано: 3 года назад
  • Что такое генеративный ИИ и как он работает? – Лекции Тьюринга с Миреллой Лапатой 2 года назад
    Что такое генеративный ИИ и как он работает? – Лекции Тьюринга с Миреллой Лапатой
    Опубликовано: 2 года назад
  • Graph Neural Networks - a perspective from the ground up 4 года назад
    Graph Neural Networks - a perspective from the ground up
    Опубликовано: 4 года назад
  • AI-powered Drug Discovery lecture by Dr. Michael Levitt, 2013 Nobel Laureate in Chemistry 4 года назад
    AI-powered Drug Discovery lecture by Dr. Michael Levitt, 2013 Nobel Laureate in Chemistry
    Опубликовано: 4 года назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5