• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

iMAML: Meta-Learning with Implicit Gradients (Paper Explained) скачать в хорошем качестве

iMAML: Meta-Learning with Implicit Gradients (Paper Explained) 5 years ago

deep learning

machine learning

arxiv

explained

neural networks

ai

artificial intelligence

paper

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
iMAML: Meta-Learning with Implicit Gradients (Paper Explained)
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: iMAML: Meta-Learning with Implicit Gradients (Paper Explained) в качестве 4k

У нас вы можете посмотреть бесплатно iMAML: Meta-Learning with Implicit Gradients (Paper Explained) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон iMAML: Meta-Learning with Implicit Gradients (Paper Explained) в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



iMAML: Meta-Learning with Implicit Gradients (Paper Explained)

Gradient-based Meta-Learning requires full backpropagation through the inner optimization procedure, which is a computational nightmare. This paper is able to circumvent this and implicitly compute meta-gradients by the clever introduction of a quadratic regularizer. OUTLINE: 0:00 - Intro 0:15 - What is Meta-Learning? 9:05 - MAML vs iMAML 16:35 - Problem Formulation 19:15 - Proximal Regularization 26:10 - Derivation of the Implicit Gradient 40:55 - Intuition why this works 43:20 - Full Algorithm 47:40 - Experiments Paper: https://arxiv.org/abs/1909.04630 Blog Post: https://www.inference.vc/notes-on-ima... Abstract: A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint that is, up to small constant factors, no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks. Authors: Aravind Rajeswaran, Chelsea Finn, Sham Kakade, Sergey Levine Links: YouTube:    / yannickilcher   Twitter:   / ykilcher   BitChute: https://www.bitchute.com/channel/yann... Minds: https://www.minds.com/ykilcher

Comments
  • Efficient and Modular Implicit Differentiation (Machine Learning Research Paper Explained) 3 years ago
    Efficient and Modular Implicit Differentiation (Machine Learning Research Paper Explained)
    Опубликовано: 3 years ago
    17923
  • Gradient descent, how neural networks learn | DL2 7 years ago
    Gradient descent, how neural networks learn | DL2
    Опубликовано: 7 years ago
    7813245
  • Supervised Contrastive Learning 5 years ago
    Supervised Contrastive Learning
    Опубликовано: 5 years ago
    63567
  • But what is a neural network? | Deep learning chapter 1 7 years ago
    But what is a neural network? | Deep learning chapter 1
    Опубликовано: 7 years ago
    19526246
  • An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained) 4 years ago
    An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)
    Опубликовано: 4 years ago
    367664
  • Gradient Descent, Step-by-Step 6 years ago
    Gradient Descent, Step-by-Step
    Опубликовано: 6 years ago
    1566525
  • An introduction to Policy Gradient methods - Deep Reinforcement Learning 6 years ago
    An introduction to Policy Gradient methods - Deep Reinforcement Learning
    Опубликовано: 6 years ago
    232249
  • How might LLMs store facts | DL7 8 months ago
    How might LLMs store facts | DL7
    Опубликовано: 8 months ago
    1399223
  • Deep Ensembles: A Loss Landscape Perspective (Paper Explained) 4 years ago
    Deep Ensembles: A Loss Landscape Perspective (Paper Explained)
    Опубликовано: 4 years ago
    23911
  • I Made 1.000 A.I Warriors FIGHT... (Deep Reinforcement Learning) 2 years ago
    I Made 1.000 A.I Warriors FIGHT... (Deep Reinforcement Learning)
    Опубликовано: 2 years ago
    504754

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS