У нас вы можете посмотреть бесплатно MLOPS Zero to Hero Episode 1 - Complete Introduction to MLOps | Rajinikanth Vadla или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🚀 Welcome to MLOPS ZERO TO HERO Series by RAJINIKANTH VADLA! 🚀 🎯 WANT PERSONALIZED GUIDANCE? Book 1-on-1 Sessions with Me! 👇 🔗 https://topmate.io/rajinikanthvadla 💡 Connect for mentorship, career advice, MLOps consulting & more! In this Episode 1, we dive deep into the complete introduction to MLOps (Machine Learning Operations). Whether you're a beginner or looking to level up your MLOps skills, this series will take you from zero to hero! 👨💻 Instructor: RAJINIKANTH VADLA 📚 What You'll Learn: ✅ What is MLOps and why it matters ✅ MLOps fundamentals and core concepts ✅ Real-world MLOps implementation strategies ✅ Industry best practices for production ML systems ✅ Tools and technologies in the MLOps ecosystem 🎯 Perfect for: Data Scientists Machine Learning Engineers DevOps Engineers Software Developers AI/ML Enthusiasts 💡 Keywords: MLOps, Machine Learning Operations, ML Engineering, DevOps, AI Operations, Production ML, Model Deployment, ML Pipeline, Data Science, Machine Learning Tutorial, MLOps Tutorial, Rajinikanth Vadla 🔔 Subscribe and hit the bell icon to never miss an episode from the MLOps Zero to Hero series! 👉 Follow RAJINIKANTH VADLA for more amazing content on ML, AI, and DevOps! #MLOps #MachineLearning #AI #DataScience #DevOps #MLEngineering #RajinikanthVadla #MLOpsZeroToHero #Tutorial #techeducation MLOps full course, MLOps tutorial for beginners, MLOps end to end project, LLMOps tutorial, LLM deployment, ChatGPT deployment, AWS SageMaker tutorial, Azure Machine Learning, Google Cloud AI Platform, Kubernetes tutorial, Docker tutorial, MLflow tutorial, machine learning engineering, data engineering, generative AI, large language models, LLM fine tuning, prompt engineering, RAG tutorial, vector database, langchain tutorial, AWS MLOps, Azure MLOps, GCP MLOps, cloud machine learning, ML pipeline, model deployment AWS, model monitoring, CI/CD machine learning, DevOps tutorial, Python machine learning, deep learning deployment, TensorFlow serving, PyTorch deployment, model versioning, experiment tracking, feature store, data drift detection, model registry, Kubernetes MLOps, Docker MLOps, Jenkins ML, GitHub Actions ML, terraform AWS, infrastructure as code, serverless ML, AWS Lambda ML, API deployment, FastAPI ML, model optimization, quantization, ONNX, TensorRT, ML inference, batch prediction, real-time prediction, streaming ML, Apache Kafka ML, data pipeline, airflow tutorial, prefect tutorial, AWS Glue, Azure Data Factory, BigQuery ML, Snowflake ML, Databricks MLOps, Vertex AI, AWS Bedrock, Azure OpenAI, O MLOps MLOps tutorial Algorithm vs model Algorithm vs model in MLOps When to use algorithm vs model Machine learning algorithm ML model explained MLOps zero to hero MLOps full course AIOps vs MLOps GenAI tutorial LLMOps basics Machine learning operations ML deployment Data science pipeline DevOps for ML AI operations Generative AI MLOps ML engineering tutorial EP05 MLOps series algorithm vs model in machine learning when to call algorithm vs model difference between algorithm and model in ml what is ml algorithm what is ml model ml model vs ai model algorithm vs model explained machine learning basics for beginners mlops zero to hero rajinikanth vadla mlops course mlops full course mlops for beginners mlops step by step aiops tutorial llmops tutorial genai full course mlops explained simply mlops production pipeline mlops azure aws gcp mlops real world example mlops interview preparation mlops vs devops mlops course for beginners mlops learning roadmap 2025 aiops learning roadmap genai for ml engineers difference between data science and mlops ml model training explained supervised vs unsupervised algorithms how machine learning works end to end model evaluation explained ml model deployment tutorial mlops pipeline github example model drift monitoring in mlops model versioning explained ci cd in mlops mlops project ideas for resume real world mlops pipeline example mlops engineer roadmap 2025 mlops job interview questions mlops resume project ideas aiops job roadmap llmops career path ai engineer vs ml engineer how to become mlops engineer top mlops tutorials 2025 mlops course by rajinikanth vadla genai mlops pipeline llmops explained large language models in mlops genai workflow in production aiops with generative ai mlops with chatgpt models deploy llm models in production fine tuning llms in mlops llmops vs mlops generative ai vs machine learning genai projects with python open source genai mlops tools when does an algorithm become a model in ml ml model vs ai model with example simple explanation algorithm vs model mlops tutorial step by step in telugu / hindi / english best mlops full course 2025 mlops hands-on labs mlops explained for absolute beginners end-to-end mlops workflow with demo real time mlops example explained rajinikanth vadla mlops zero to hero aiops and mlops real world projects genai and llmops explained visually mlops complete roadmap with projects