• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Yi Ma | Deep Networks from First Principles скачать в хорошем качестве

Yi Ma | Deep Networks from First Principles 4 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Yi Ma | Deep Networks from First Principles
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Yi Ma | Deep Networks from First Principles в качестве 4k

У нас вы можете посмотреть бесплатно Yi Ma | Deep Networks from First Principles или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Yi Ma | Deep Networks from First Principles в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Yi Ma | Deep Networks from First Principles

1/16/2021 Math Science Literature Lecture Speaker: Yi Ma (University of California, Berkeley) Title: Deep Networks from First Principles Abstract: In this talk, we offer an entirely “white box’’ interpretation of deep (convolution) networks from the perspective of data compression (and group invariance). In particular, we show how modern deep layered architectures, linear (convolution) operators and nonlinear activations, and even all parameters can be derived from the principle of maximizing rate reduction (with group invariance). All layers, operators, and parameters of the network are explicitly constructed via forward propagation, instead of learned via back propagation. All components of so-obtained network, called ReduNet, have precise optimization, geometric, and statistical interpretation. There are also several nice surprises from this principled approach: it reveals a fundamental tradeoff between invariance and sparsity for class separability; it reveals a fundamental connection between deep networks and Fourier transform for group invariance – the computational advantage in the spectral domain (why spiking neurons?); this approach also clarifies the mathematical role of forward propagation (optimization) and backward propagation (variation). In particular, the so-obtained ReduNet is amenable to fine-tuning via both forward and backward (stochastic) propagation, both for optimizing the same objective. This is joint work with students Yaodong Yu, Ryan Chan, Haozhi Qi of Berkeley, Dr. Chong You now at Google Research, and Professor John Wright of Columbia University.

Comments
  • 1W-MINDS: Yi Ma, April 1, 2021, Deep Networks from First Principles 4 года назад
    1W-MINDS: Yi Ma, April 1, 2021, Deep Networks from First Principles
    Опубликовано: 4 года назад
  • Zhigang Yao | Interaction of Statistics and Geometry: A New Landscape for Data Science 1 месяц назад
    Zhigang Yao | Interaction of Statistics and Geometry: A New Landscape for Data Science
    Опубликовано: 1 месяц назад
  • Как происходит модернизация остаточных соединений [mHC] 1 месяц назад
    Как происходит модернизация остаточных соединений [mHC]
    Опубликовано: 1 месяц назад
  • Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией 1 год назад
    Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией
    Опубликовано: 1 год назад
  • This is why Deep Learning is really weird. 2 года назад
    This is why Deep Learning is really weird.
    Опубликовано: 2 года назад
  • Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок? 1 месяц назад
    Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок?
    Опубликовано: 1 месяц назад
  • Денежное рабство. Почему одни люди бедные, а другие богатые | ФАЙБ 12 дней назад
    Денежное рабство. Почему одни люди бедные, а другие богатые | ФАЙБ
    Опубликовано: 12 дней назад
  • 4 Hours Chopin for Studying, Concentration & Relaxation 4 года назад
    4 Hours Chopin for Studying, Concentration & Relaxation
    Опубликовано: 4 года назад
  • What is Automatic Differentiation? 5 лет назад
    What is Automatic Differentiation?
    Опубликовано: 5 лет назад
  • Yann LeCun, Chief AI Scientist at Meta AI: From Machine Learning to Autonomous Intelligence 2 года назад
    Yann LeCun, Chief AI Scientist at Meta AI: From Machine Learning to Autonomous Intelligence
    Опубликовано: 2 года назад
  • MIT 6.S191 (2020): Introduction to Deep Learning 5 лет назад
    MIT 6.S191 (2020): Introduction to Deep Learning
    Опубликовано: 5 лет назад
  • Визуализация гравитации 10 лет назад
    Визуализация гравитации
    Опубликовано: 10 лет назад
  • A Theory of the Mechanics of Information - Christopher Hazard 3 недели назад
    A Theory of the Mechanics of Information - Christopher Hazard
    Опубликовано: 3 недели назад
  • Deep Learning State of the Art (2020) 6 лет назад
    Deep Learning State of the Art (2020)
    Опубликовано: 6 лет назад
  • Самый важный алгоритм в машинном обучении 1 год назад
    Самый важный алгоритм в машинном обучении
    Опубликовано: 1 год назад
  • Все, что вам нужно знать о теории управления 3 года назад
    Все, что вам нужно знать о теории управления
    Опубликовано: 3 года назад
  • LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры 1 год назад
    LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры
    Опубликовано: 1 год назад
  • Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747? 3 месяца назад
    Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?
    Опубликовано: 3 месяца назад
  • Intro to graph neural networks (ML Tech Talks) 4 года назад
    Intro to graph neural networks (ML Tech Talks)
    Опубликовано: 4 года назад
  • Earth to Earth, Dust to Dust: The Birth and Death of Worlds 2 года назад
    Earth to Earth, Dust to Dust: The Birth and Death of Worlds
    Опубликовано: 2 года назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5