• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Beyond Linearity: Mastering Fractional Polynomial Regression in Stata скачать в хорошем качестве

Beyond Linearity: Mastering Fractional Polynomial Regression in Stata 2 недели назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Beyond Linearity: Mastering Fractional Polynomial Regression in Stata
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Beyond Linearity: Mastering Fractional Polynomial Regression in Stata в качестве 4k

У нас вы можете посмотреть бесплатно Beyond Linearity: Mastering Fractional Polynomial Regression in Stata или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Beyond Linearity: Mastering Fractional Polynomial Regression in Stata в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Beyond Linearity: Mastering Fractional Polynomial Regression in Stata

Fractional Polynomial (FP) regression is a flexible parametric approach designed to model nonlinear relationships between a continuous predictor and an outcome variable. Unlike conventional polynomial models that are restricted to positive integer powers (squares, cubes), FP regression selects powers from a predefined set S={−2,−1,−0.5,0,0.5,1,2,3}, where 0 represents the natural logarithm. By allowing combinations of these powers—including repeated powers which introduce logarithmic terms—FP models can capture a diverse array of curve shapes, such as sigmoids or asymptotes. This method is particularly valuable because it avoids the artifacts, such as edge effects and "waves," that often plague high-degree standard polynomials. Implementing FP regression in Stata is highly automated using the fp prefix command. The basic syntax is fp term: estimation_command, where term is the variable to be transformed. For example, to model the nonlinear effect of vehicle weight on mileage, you would type fp weight: regress mpg weight foreign. Stata automatically iterates through possible power combinations (typically 44 for a second-degree polynomial) and selects the best-fitting model based on the lowest deviance. Essential options include scale, which normalizes large variable values to prevent numerical errors, and center, which simplifies the interpretation of the intercept. Post-estimation, users can utilize fp generate to store the transformed variables for further analysis or prediction. Comparing Fractional Polynomials and Splines for Curve Fitting Fractional Polynomial (FP) regression and Splines represent two distinct philosophies for modeling nonlinear relationships: global versus local fitting. FP regression is a parametric approach that extends conventional polynomials by selecting powers from a predefined set that includes negative integers, fractions, and logarithms. A major advantage of FP is parsimony; complex curve shapes can often be modeled effectively using only one or two power terms, thereby avoiding the unstable "waves" and artifacts often produced by high-degree standard polynomials. This makes FP highly effective for capturing smooth, global trends with a concise functional form. Conversely, regression Splines rely on a piecewise approach, dividing the data range into regions separated by knots and fitting low-degree polynomials within each interval. This piecewise nature grants Splines superior flexibility to model local data features that a global function might miss. However, this flexibility introduces the challenge of selecting the number and placement of knots, which directly influences the model's degrees of freedom. While Splines can adapt to sharp local changes, they risk overfitting or becoming "wiggly" if too many knots are used, whereas FP generally produces smoother, stable curves over the entire range of data. Comparing Efficiency: Fractional Polynomials vs. High-Degree Polynomials To compare the effectiveness of fractional polynomial (FP) regression against high-degree conventional polynomials, researchers must evaluate the balance between curve flexibility and model stability. Standard polynomials are restricted to positive integer powers. While increasing the polynomial degree (e.g., to cubic, quartic, or higher) allows for more complex curves, it notoriously introduces undesirable artifacts, such as artificial "waves" or "wiggles" in the fitted function, and results in poor stability at the boundaries of the data, known as edge effects. In contrast, FP regression addresses these limitations by expanding the candidate powers to include negative integers, fractions, and logarithms. This extension allows FPs to capture a diverse range of functional forms—such as asymptotes or sharp changes in slope—using only one or two terms, whereas a standard polynomial might require a much higher degree to approximate the same shape. Consequently, FP models are generally more parsimonious, offering a superior fit with fewer parameters while avoiding the erratic tail behavior and overfitting problems common in high-degree global polynomials. Ultimately, FPs provide a practical compromise by maintaining the global nature of polynomials while offering the flexibility required for complex nonlinear relationships.

Comments
  • Mastering Panel Data in Stata: Handling Heteroskedasticity and Autocorrelation with GLS (xtgls) 2 недели назад
    Mastering Panel Data in Stata: Handling Heteroskedasticity and Autocorrelation with GLS (xtgls)
    Опубликовано: 2 недели назад
  • Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3 1 год назад
    Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3
    Опубликовано: 1 год назад
  • Relaxing Chillout Music – Café del Mar Inspired Ibiza Vibes 🌅 24/7 Sunset Lounge Radio
    Relaxing Chillout Music – Café del Mar Inspired Ibiza Vibes 🌅 24/7 Sunset Lounge Radio
    Опубликовано:
  • =Моцарт - Лучшие произведения= 9 лет назад
    =Моцарт - Лучшие произведения=
    Опубликовано: 9 лет назад
  • Онлайн-курс TSAR: Модуль 3. Подготовка протоколов клинических испытаний. 1 год назад
    Онлайн-курс TSAR: Модуль 3. Подготовка протоколов клинических испытаний.
    Опубликовано: 1 год назад
  • Visualizing Linear Regression: How to Plot Fitted Lines and Confidence Intervals in Stata #stata 2 недели назад
    Visualizing Linear Regression: How to Plot Fitted Lines and Confidence Intervals in Stata #stata
    Опубликовано: 2 недели назад
  • Bias vs Variance Explained Simply | Day 3 – 100 Days of ML 8 дней назад
    Bias vs Variance Explained Simply | Day 3 – 100 Days of ML
    Опубликовано: 8 дней назад
  • Построение экспоненциальных и логарифмических графиков 1 год назад
    Построение экспоненциальных и логарифмических графиков
    Опубликовано: 1 год назад
  • Музыка под утренний кофе — зимний джаз и тепло 1 месяц назад
    Музыка под утренний кофе — зимний джаз и тепло
    Опубликовано: 1 месяц назад
  • Основы машинного обучения: Кросс-валидация. 7 лет назад
    Основы машинного обучения: Кросс-валидация.
    Опубликовано: 7 лет назад
  • Handling Model Uncertainty: Bayesian Model Averaging (BMA) with Stata #econometrics #stata 2 недели назад
    Handling Model Uncertainty: Bayesian Model Averaging (BMA) with Stata #econometrics #stata
    Опубликовано: 2 недели назад
  • ACSESS 2025 – Student Blitz 10 месяцев назад
    ACSESS 2025 – Student Blitz
    Опубликовано: 10 месяцев назад
  • Causal Inference Beyond the Mean: Mastering IV Quantile Regression (ivqregress) in Stata #stata 2 недели назад
    Causal Inference Beyond the Mean: Mastering IV Quantile Regression (ivqregress) in Stata #stata
    Опубликовано: 2 недели назад
  • Unobserved Components Models: Extracting Stochastic Cycles #stata #econometric 5 дней назад
    Unobserved Components Models: Extracting Stochastic Cycles #stata #econometric
    Опубликовано: 5 дней назад
  • Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747? 3 месяца назад
    Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?
    Опубликовано: 3 месяца назад
  • Vintage French Chansons 🌹 Tendresse Intemporelle et Souvenirs Doux de la Ville Lumière 🇫🇷 3 дня назад
    Vintage French Chansons 🌹 Tendresse Intemporelle et Souvenirs Doux de la Ville Lumière 🇫🇷
    Опубликовано: 3 дня назад
  • Advanced Econometrics: Estimating Markov Switching Models (MSDR & MSAR) #stata #econometric #time... 5 дней назад
    Advanced Econometrics: Estimating Markov Switching Models (MSDR & MSAR) #stata #econometric #time...
    Опубликовано: 5 дней назад
  • Lệnh margins và marginsplot: phân tích cận biên, AME, ATE #stata #econometrics #regression 10 дней назад
    Lệnh margins và marginsplot: phân tích cận biên, AME, ATE #stata #econometrics #regression
    Опубликовано: 10 дней назад
  • Mastering Seemingly Unrelated Regressions (SUR) in Stata: Efficiency Gains and System Estimation 11 дней назад
    Mastering Seemingly Unrelated Regressions (SUR) in Stata: Efficiency Gains and System Estimation
    Опубликовано: 11 дней назад
  • How to Run Multilevel Models using Stata's mixed Command #econometrics #stata #regression #research 2 недели назад
    How to Run Multilevel Models using Stata's mixed Command #econometrics #stata #regression #research
    Опубликовано: 2 недели назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5