У нас вы можете посмотреть бесплатно Transformer Neural Networks - EXPLAINED! (Attention is all you need) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Please subscribe to keep me alive: https://www.youtube.com/c/CodeEmporiu... BLOG: / dataemporium PLAYLISTS FROM MY CHANNEL ⭕ Reinforcement Learning: • Reinforcement Learning 101 Natural Language Processing: • Natural Language Processing 101 ⭕ Transformers from Scratch: • Natural Language Processing 101 ⭕ ChatGPT Playlist: • ChatGPT ⭕ Convolutional Neural Networks: • Convolution Neural Networks ⭕ The Math You Should Know : • The Math You Should Know ⭕ Probability Theory for Machine Learning: • Probability Theory for Machine Learning ⭕ Coding Machine Learning: • Code Machine Learning MATH COURSES (7 day free trial) 📕 Mathematics for Machine Learning: https://imp.i384100.net/MathML 📕 Calculus: https://imp.i384100.net/Calculus 📕 Statistics for Data Science: https://imp.i384100.net/AdvancedStati... 📕 Bayesian Statistics: https://imp.i384100.net/BayesianStati... 📕 Linear Algebra: https://imp.i384100.net/LinearAlgebra 📕 Probability: https://imp.i384100.net/Probability OTHER RELATED COURSES (7 day free trial) 📕 ⭐ Deep Learning Specialization: https://imp.i384100.net/Deep-Learning 📕 Python for Everybody: https://imp.i384100.net/python 📕 MLOps Course: https://imp.i384100.net/MLOps 📕 Natural Language Processing (NLP): https://imp.i384100.net/NLP 📕 Machine Learning in Production: https://imp.i384100.net/MLProduction 📕 Data Science Specialization: https://imp.i384100.net/DataScience 📕 Tensorflow: https://imp.i384100.net/Tensorflow REFERENCES [1] The main Paper: https://arxiv.org/abs/1706.03762 [2] Tensor2Tensor has some code with a tutorial: https://www.tensorflow.org/tutorials/... [3] Transformer very intuitively explained - Amazing: http://jalammar.github.io/illustrated... [4] Medium Blog on intuitive explanation: / what-is-a-transformer [5] Pretrained word embeddings: https://nlp.stanford.edu/projects/glove/ [6] Intuitive explanation of Layer normalization: https://mlexplained.com/2018/11/30/an... [7] Paper that gives even better results than transformers (Pervasive Attention): https://arxiv.org/abs/1808.03867 [8] BERT uses transformers to pretrain neural nets for common NLP tasks. : https://ai.googleblog.com/2018/11/ope... [9] Stanford Lecture on RNN: http://cs231n.stanford.edu/slides/201... [10] Colah’s Blog: https://colah.github.io/posts/2015-08... [11] Wiki for timeseries of events: https://en.wikipedia.org/wiki/Transfo...)