У нас вы можете посмотреть бесплатно Stéphane Mallat: Modeling Deep Networks: Network Learning for Image Processing или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Recording of Stéphane Mallat’s (Collège de France) talk on November 18, 2021, at the EPFL Seminar Series in Imaging. Abstract. Deep neural network learning from data has taken over image processing. Not just for classificaiton and regression but also for denoising and inverse problems. Is it the end of geometric models and understanding ? Deep network models are high-dimensional and must be analyzed in a probabilistic framework. Yet they must also take into account image properties, including multiscale structures and symmetries. The lecture takes an information theory point of view, and shows that the underlying mathematics are closely related to statistical physics. We introduce a general class of interpretable neural network models through the renormalisation group and multiscale wavelet transforms, with applications to image generation and classification. See upcoming talks on: imagingseminars.org The EPFL Seminar Series in Imaging is run by EPFL Center for Imaging: imaging.epfl.ch