У нас вы можете посмотреть бесплатно Few Shot Learning with Code - Meta Learning - Prototypical Networks или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This video addresses one of the biggest drawbacks of classical deep learning, the requirement for a large amount of data. Few-Shot Learning has become a popular method for many researchers to deal with this issue in recent years. The goal of few-shot learning (FSL) is to teach a machine to do something new with a significantly small amount of data. I mentioned multiple popular algorithms that are used to solve FSL using the Meta-Learning framework. Then explained one of the popular algorithms called Prototypical Networks (NIPS’17, 3000+ citations) along with how to train and test FSL on Omniglot dataset in Google Colab using PyTorch. Prototypical Networks classifies new classes (not part of training data/classes) based on their similarity to a small number of examples per class. This is one of the simplest algorithms to solve FSL. There are some other little more advanced algorithms like MAML, Meta-LSTM, and Reptile. I’ll cover them in future videos. Stay tuned. Thanks! -------------------- ✅👍📸 Subscribe to the Channel 👉 / @lightscameravision -------------------- Code Colab: https://colab.research.google.com/dri... Paper: https://arxiv.org/pdf/1703.05175.pdf -------------------- Chapters 0:00 Intro: Issues with Classical Deep Learning 0:51 Alternative to Classical Learning: Few-Shot learning 2:18 Classical Learning vs Meta-Learning 5:47 Concept: Prototypical Networks 7:00 Code: Prototypical Networks - Train & Test 13:34 End -------------------- #fewshotlearning #metalearning #prototypicalnetworks #computervision