У нас вы можете посмотреть бесплатно [SKKU AI Colloquium2025] 심규홍 교수-Context Compression for Efficient Multimodal LLMs или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
강연제목: Context Compression for Efficient Multimodal LLMs 강연자: 심규홍 교수(성균관대학교) 강연요약: As multimodal large language models (MLLMs) continue to extend their context length, a single model can now integrate information from text, audio, video, and embodied signals. Despite this progress, deploying ultra-long-context models in real systems remains difficult because of practical memory constraints and strict latency requirements. In this talk, I will outline recent approaches designed to address these challenges, with particular attention to techniques that compress the key–value (KV) cache. I will close by highlighting open research directions and practical considerations for building scalable and efficient multimodal LLM inference pipelines.